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ABSTRACT

Loops with multiple phases are challenging to verify because they

require disjunctive invariants. Invariants could also have the form of

implication between a precondition for the phase and a lemma that

is valid throughout the phase. Such invariant structure is however

not widely supported in state-of-the-art verification. We present a

novel SMT-based approach to synthesize implication invariants for

multi-phase loops. Our technique computes Model Based Projec-

tions to discover the program’s phases and leverages data learning

to get relationships among loop variables at an arbitrary place in the

loop. It is effective in the challenging cases of mutually-dependent

periodic phases, where many implication invariants need to be

discovered simultaneously. Our approach has shown promising re-

sults in its ability to verify programs with complex phase structures.

We have implemented and evaluated our algorithm against several

state-of-the-art solvers.
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1 INTRODUCTION

Automated software verification tools often delegate their computa-

tional tasks to solvers for Satisfiability Modulo Theories (SMT) and

Constrained Horn Clauses (CHC). The latter aims at synthesizing

inductive invariants for loops and recursive calls, and it enables

sound reasoning about software safety. Existing CHC solvers ex-

tensively rely on SMT solvers. The ability to discover a solution

often critically depends on the capabilities of the SMT solver to

apply interpolation or quantifier elimination. Recently proposed
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guess-and-check methods [18, 50, 54], while still relying on SMT

solvers to prove invariants, are guided by external sources, such as

user-provided grammars, templates, or concrete data to generate

different pieces of invariants.

Programs that display control-flow divergence in the bodies of

their loops usually require multi-phase invariants that are usually

disjunctive and are more difficult to infer [5, 46, 56, 57]. Our work is

motivated by the need for improved methods to verify multi-phased

systems used in several fields, specifically:

• Control software and reactive systems perform tasks depending

on their environment [3, 35, 46]. Such changes boil down to

phases, where the behavior of the system will be different based

on the conditions. These systems are often safety critical such

as self-driving systems, flight software, or medical diagnostic

software.

• Multi-phase loops may arise from a common transformation

technique such as loop flattening [42], used by verification fron-

tends when translating from a programming language such as C

or Java into CHCs [28]. Verification systems have become more

modular, with solvers in the backend relying on frontend systems

to translate a given program. Consequently the backend solvers

do not always have control over the result of the translation and

can be given multi-phase loops even if the source program does

not have them.

• Termination checking is often reduced to safety verification [11,

21, 40]. A ranking function is found to overestimate the number

of iterations of a loop. In a complicated case of lexicographic

ranking function synthesis [12, 40, 62], various program phases

need to be analyzed. Multi-phase invariants may help in these

cases.

Our new approach to multi-phase invariant synthesis aims to

find predicates that have the form of implication, where the left-

hand side is called a phase guard uniquely describing when a certain

phase is enabled, and the right-hand side is called a phase lemma.

Implications by definition encode a disjunction, so their use here

intuitively captures the disjunctive nature of multi-phase loops.

Generation of phase lemmas is challenging because they should

be valid under their phase guards. In this paper we describe a new

algorithm to derive both phase lemmas and their phase guards

automatically.

We build on top of the Houdini [23] strategy, where invariants

are selected from a set of candidates. The synthesis loop can be pa-

rameterized by grammars, be data-driven, or follow some semantic

inference rules. It begins similarly to many traditional algorithms,

i.e., by guessing candidates and checking their inductiveness using

an SMT solver. Our main idea is to synthesize a phase guard for

each candidate that fails the inductiveness check, thus, weakening

it. Intuitively, a phase guard represents a set of states, for which

the failed candidate is inductive.
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Figure 1: Architecture of ImplCheck.

Our first main insight is that phase guards are computed by

a Model-Based Projection (MBP) [7, 37] that under-approximates

quantifier elimination (QE) over the loop body. Because a diverging

control-flow can be represented as a disjunctive formula, its under-

approximation (a disjunct) encodes a loop phase. We use an MBP

algorithm to lazily [45] compute all phase guards and organize

them in a decision tree.

The second important design choice is the use of data traces from

a particular phase for discovering phase lemmas. For numeric pro-

grams, existing methods [19, 38, 47, 60] have already proven their

success, but they critically depend on relevant data. We propose a

new method for data collection using an SMT solver that takes a

bounded unrolling of a phase beginning at a state where the phase

guard does not hold and proceeds to states where it holds. This

avoids the creation of the full unrolling that executes the loop from

its initial state up until the entry to the current phase. However, a

naive application of this idea may result in some important com-

putation from a previous phase not being taken into account. To

mitigate this, our algorithm reuses the invariants from the previous

phases and any global invariants1, if they have already been found.

The high-level overview of the approach is shown in Fig. 1. The

algorithm takes a program encoded in CHCs, then extracts and

organizes its phases into a decision tree. The search of candidates

begins with an enumerative approach that supplies an initial set

of candidates, which, if they fail the Houdini check, are passed to

our weakening engine. The enumeration block of our framework is

parameterizeable by any paradigm which synthesizes expressions,

including a Syntax-Guided Synthesis [2] (SyGuS) approach and/or

a data learner [60] that extracts invariants from bounded behaviors.

InWeaken-and-Propagate, candidates are synthesized into the

form of implication, with the premise being a phase guard and the

conclusion being a phase lemma. These implication candidates are

passed to Houdini to calculate their inductive subset. When the

collection of Lemmas returned by Houdini is strong enough to

block the error states, the program is verified safe.

1A global invariant is one that is not associated with a phase guard.

Our new algorithm has been implemented in a tool called Impl-

Check on top of the FreqHorn [18] CHC solver and the Z3 [14]

SMT solver and uses their quantifier elimination, MBP, and data

learning algorithms. We have evaluated it against state-of-the-art

on a set of public benchmarks. Of particular interest are a sub-

set from CHC-COMP, that include a variety of phase structures

within their loops, which we believe tests the robustness of our ap-

proach. The set of experiments confirms that ImplCheck is capable

of inferring a much larger set of multi-phase invariants than the

competitors and that its overhead while running on single-phase

benchmarks is small.

The rest of the paper is structured as follows. We proceed with

an illustrating example in Sect. 2 and a brief background in Sect. 3.

Sect. 4 summarizes our contributions on synthesizing phase guards

using MBP and organizing them in a decision tree. The overview of

the algorithm is then presented in Sect. 5. Sect. 6 gives two strategies

on synthesizing phase lemmas: by propagation using quantifier

elimination (a general approach), and accelerated data-learning (an

approach designed for numeric programs). The implementation

is briefly reported in Sect. 7, and the evaluation and comparison

against the state-of-the-art is detailed in Sect. 8.

2 ILLUSTRATING EXAMPLE

The program in Fig. 2 illustrates the main concepts of our approach.

It has three variables: x always increments, y is assigned nondeter-

ministically, and z increments conditionally. The loop body has a

single conditional and up to three different phases, depending on

the value of y. The plot in Fig. 2 depicts the case when y is positive,

and thus the loop goes to three phases: 1) from the initial state until

the guard starts to hold, 2) when the guard holds, and 3) when the

guard does not hold anymore. After the loop terminates and if y is

positive and x is sufficiently large, our goal is to prove that z equals

1000.

A safety property can be proved by finding an inductive invari-

ant which intuitively 1) is implied by the initial states formula, 2) is

closed under the transition relation, and 3) implies the safety prop-

erty. An inductive invariant for our illustration program is given

in Fig. 5. It is nontrivial: in our experiments, ten state-of-the-art in-

variant synthesizers failed to discover it automatically within a one

hour timeout. Intuitively, the invariant describes a relation between

variables x, y, and z in three phases of the loop when y is positive:

if x is sufficiently small then z remains at zero, then z and x grow

simultaneously until at some point z reaches 1000 and stagnates.

Our algorithm generates an individual invariant (called a lemma)

for each of the three phases and then conjoins them together. Each

lemma has the form of an implication, its antecedent is called a

phase guard, and its consequent is called a phase lemma.

To discover phase guards, our approach analyzes the control flow

of the program and organizes its phase-reachability information in

a decision tree (DT), shown in Fig. 3. DT approximates the order and

conditions of visiting all possible phases. That is, if y is positive,

then𝑦 > 𝑥 div 1000 holds at the beginning,𝑦 = 𝑥 div 1000 holds

after some iterations, and 𝑦 < 𝑥 div 1000 holds at the end (and

thus the rightmost branch of the DT has depth three). In general, we

can show that every program has only a finite number of phases,
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int x, y, z;

x, z = 0;

y = nondetInt ();

while (*) {

if (y == x/1000)

z++;

x++;

}

if (y > 0 &&

x > 1000*(y + 1))

assert(z == 1000);
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Figure 2: C-like program with a multi-phase loop.
⊤

𝑦 < 0 ∧ 𝑦 < 𝑥 div 1000 𝑦 = 0 ∧ 𝑦 = 𝑥 div 1000 𝑦 > 0 ∧ 𝑦 > 𝑥 div 1000

𝑦 = 0 ∧ 𝑦 < 𝑥 div 1000 𝑦 > 0 ∧ 𝑦 = 𝑥 div 1000

𝑦 > 0 ∧ 𝑦 < 𝑥 div 1000

Figure 3: Decision tree for phase-guard selection.

First phase

x y z

0 5 0

1 5 0

2 5 0

Second phase

x y z

5001 5 1

5002 5 2

5003 5 3

Third phase

x y z

6000 5 1000

6001 5 1000

6002 5 1000

Figure 4: Data matrices capturing variable values.

Inv ↦→ 𝜆𝑥,𝑦, 𝑧 .

𝑦 > 0 ∧ 𝑦 > 𝑥 div 1000 =⇒ 𝑧 = 0 ∧

𝑦 > 0 ∧ 𝑦 = 𝑥 div 1000 =⇒ 𝑧 = 𝑥 − 1000𝑦 ∧

𝑦 > 0 ∧ 𝑦 < 𝑥 div 1000 =⇒ 𝑧 = 1000

Figure 5: Safe inductive invariant.

precomputed before the analysis, so our algorithm can cheaply

traverse the DT multiple times throughout the verification.

To discover phase lemmas, we can in principle follow various

techniques, from guess-and-check to fixpoint computation. How-

ever, for numeric programs, the most effective approach in our

experience is based on data learning and Houdini. It begins with

constructing a data matrix for all the phases individually (shown in

Fig. 4) and inferring relationships between variables. For the first

phase, the process is straightforward: a value for y is randomly

picked: and if it is positive then we have to follow the rightmost

branch of the DT. Thus, the values for x and z in the first three

iterations are inferred precisely, giving us a phase lemma 𝑧 = 0 to

be associated with the phase guard 𝑦 > 0 ∧ 𝑦 > 𝑥 div 1000. Then,

the chosen branch of the DT leads us to the second phase (i.e., in

which 𝑦 > 0 ∧ 𝑦 = 𝑥 div 1000 holds). The data matrix creation

in this case is trickier since for 𝑦 = 5 we would have to unwind

the loop 5000 times (which is expensive). Instead, we simulate this

using a technique called fast-forwarding: the loop unrolling begins

at an arbitrary iteration, such that the first phase guard holds at the

beginning, but the second guard holds at the end. For our exam-

ple, it is sufficient to get the second data matrix and consequently

the second phase lemma 𝑧 = 𝑥 − 1000𝑦. Lastly, the third phase is

computed similarly, and the conjunction of them is sufficient for

proving the safety property in the program.

3 BACKGROUND

This paper approaches the problem of automated software verifica-

tion by reduction to Satisfiability Modulo Theories (SMT) problems.

3.1 Logic Notation and Main Routines

Automated SMT solvers determine the existence of a satisfying

assignment to variables (also called a model) of a first-order logic

formula. We write M |= 𝜑 to denote that a model M satisfies a

formula 𝜑 (and ∃M |= 𝜑 to denote the satisfiability of 𝜑). Formula

𝜑 is logically stronger than formula𝜓 (denoted 𝜑 =⇒ 𝜓 ), if every

model of 𝜑 also satisfies 𝜓 . The unsatisfiability of formula 𝜑 is

denoted 𝜑 =⇒ false. By writing𝜓 (𝑥), we denote a predicate over

free variables 𝑥 . We use ite to denote if-then-else.

For a formula 𝜑 , terms/formulas 𝑎 and 𝑏, we write 𝜑 [𝑏/𝑎] to de-

note 𝜑 after all instances of 𝑎 are replaced by 𝑏. For a set of terms/-

formulas 𝑋 and a mapping M from 𝑋 to other terms/formulas,

𝜑 [M /𝑋 ] denotes the simultaneous replacement of all 𝑥1, 𝑥2, . . . ∈ 𝑋

by M (𝑥1),M (𝑥2), . . ., respectively.

By Ψ we denote the space of all possible quantifier-free formu-

las in our background theory and by Vars a sequence of possible

variables. Because in the paper we mainly deal with conjunctive

formulas (which are created by adding/dropping conjuncts), we

sometimes slightly abuse the notation and refer to 𝑆 ∈ 2Ψ as a

conjunction of all its elements, i.e.,
∧

𝑐∈𝑆
𝑐 .

The problem of quantifier elimination is for a given ∃®𝑦 .𝜓 ( ®𝑥, ®𝑦)

to generate an equivalent ®𝑦-free formula, and it can be approached

by converting 𝜓 ( ®𝑥, ®𝑦) to DNF, eliminating quantifiers from each

disjunct, and disjoining the results. Our main insight, instead, is to

build the phase guard generation engine on top of a notion ofModel-

Based Projection (MBP) [7] that under-approximates QE without

converting to DNF. Specifically, one could compute a number of

MBPs lazily, and disjoin them. The number of MBPs is in practice

significantly lower than the number of disjuncts in the DNF of the

same formula, which yields significant performance gains.

Definition 3.1. Given a formula𝜓 over ®𝑥, ®𝑦, and a model M , an

MBP ®𝑦 (M ,𝜓 ) is a ®𝑦-free formula if the following hold:

if M |= 𝜓 ( ®𝑥, ®𝑦) then M |= MBP ®𝑦 (M ,𝜓 )

MBP ®𝑦 (M ,𝜓 ) =⇒ ∃®𝑦 .𝜓 ( ®𝑥, ®𝑦)

For linear integer arithmetic, an MBP for formula𝜓 and its model

M can be constructed from literals of formula𝜓 , converted to the

Negation Normal Form (NNF), finding literals that evaluate to true

on M , and eliminatingVars′ from their conjunction. More formally,

it is presented in Algorithm 1. We defer an example of the algorithm

run to Sect. 4.1, where it is used in the context of multi-phase

program verification.
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Algorithm 1:MBPVars′ (M , 𝜑): basic MBP construction

Input: M : model, 𝜑 (Vars,Vars′): formula

Output:𝜓 :Vars′-free MBP

1 𝜑 ← toNNF(𝜑);

2 𝜓 (Vars,Vars′) ← {ℓ | ℓ ∈ literals(𝜑) ∧M |= ℓ};

3 return QE(Vars′, ∃Vars′ .𝜓 (Vars,Vars′));

3.2 Programs and Transition Systems

We view programs as transition systems and throughout the paper

use both terms interchangeably2.

Definition 3.2. A transition system P is a tuple ⟨Vars∪Vars′, Init, Tr⟩,

whereVars andVars′ are copies of the sequence of variables at the

beginning and the end of a transition, respectively; Init and Tr

are the symbolic encodings of the initial states and the transition

relation.

A program 𝑃 and an encoding Bad of error states define a ver-

ification problem, which is satisfiable if the set of error states is

unreachable. If satisfiable, a solution of a verification problem is

a safe inductive invariant, represented by a formula Inv such that:

Inv over-approximates Init, is closed under Tr , and Inv is strong

enough to block all error states.

Definition 3.3. Given 𝑃 = ⟨Vars ∪Vars′, Init, Tr⟩; a formula Inv is

a safe inductive invariant if the following conditions (respectively

called an initiation, a consecution, and a safety) hold:

Init (Vars) =⇒ Inv(Vars) (1)

Inv(Vars) ∧ Tr (Vars,Vars′) =⇒ Inv(Vars′) (2)

Inv(Vars) ∧ Bad (Vars) =⇒ false (3)

Example 3.4. The problem of finding an inductive invariant for

program in Fig. 2 can be formulated as follows.

𝑥 = 0 ∧ 𝑧 = 0 =⇒ Inv(𝑥,𝑦, 𝑧)

Inv(𝑥,𝑦, 𝑧) ∧ 𝑥 ′ = 𝑥 + 1 ∧ 𝑦′ = 𝑦∧

𝑧′ = ite(𝑦 = 𝑥 div 1000, 𝑧 + 1, 𝑧) =⇒ Inv(𝑥 ′, 𝑦′, 𝑧′)

Inv(𝑥,𝑦, 𝑧) ∧ 𝑦 > 0∧

𝑥 > 1000(𝑦 + 1) ∧ ¬(𝑧 ≥ 1000) =⇒ false

3.3 Data Learning

We use data learning to discover inductive invariants by examining

program traces. Traces are gathered as a finite unrolling based on a

Bounded Model Checking (BMC) formula [6].

An unrolling of length𝑚 of a program 𝑃 = ⟨Vars, Init, Tr⟩ is a

conjunction:

unrl(Vars, . . . ,Vars (𝑚))
def
=

Init (Vars) ∧ Tr (Vars,Vars′) ∧ . . . ∧ Tr (Vars (𝑚−1),Vars (𝑚))

with each 𝑖, 𝑗, 𝑘, 𝑛, such that 𝑖 ≠ 𝑗 and 𝑘 ≠ 𝑛,Vars (𝑖) [𝑘] ≠Vars ( 𝑗) [𝑛].

Note that we rely on sequences (rather than on sets) of variables

Vars, and we can extract the 𝑛th variable ofVars viaVars[𝑛]. This

is useful for obtaining data to learn predicates, which consist of

2Although the presentation assumes single-loop programs, our implementation works
also for programs with multiple loops.

values for each variable in each iteration of the program. It can be

either obtained by a dynamic execution, or extracted from a model,

M |= unrl(Vars, . . . ,Vars (𝑚)), for some unrolling of the program.

The values obtained from the model are then stored in a matrix.

An 𝑚 × 𝑛 matrix 𝐴 is composed of 𝑚 rows representing the

iterations of a program and of 𝑛 columns representing the value of a

variableVars[ 𝑗]. Each element,𝐴[𝑖, 𝑗], of𝐴 holds the value in the 𝑖th

iteration of the 𝑗 th variable, that is, if M |= unrl(Vars, . . . ,Vars (𝑚))

then 𝐴[𝑖, 𝑗]
def
= M (Vars (𝑖) [ 𝑗]).

Fig. 4 shows three example matrices representing three different

phases of Example 3.4. An unrolling for our motivating example

begins at the initial state and captures the information shown in

the First Phase matrix of Fig. 4. For instance, the first matrix is

computed from a model of unrl(Vars,Vars′,Vars′′), contained of Init

and two copies of Tr . After an unrolling, data learning proceeds to

analyze the resulting matrix.

From linear algebra, given a vector space V over a field F, its

basis B = {b1,. . . , b𝑖 } is the minimal subset of V if every vector

𝑣 ∈ V can be written as a linear combination of B. The basis B of

the null space, the set of all vectors that when multiplied by𝐴 equal

to ®0, of𝐴 produces candidate invariants [60]. Invariants found from

basis vectors take the shape of equalities, 𝑎1𝑥1 + 𝑎2𝑥2 + . . . 𝑎𝑖𝑥𝑖 = 0.

Example 3.5. Let 𝐴 be the matrix of Second Phase in Fig. 4.

Solving 𝐴®𝑏 = 0, the solution for ®𝑏 is
(

−1
1000
1

)

. Then the candidate

invariant is 𝑧 = 𝑥 − 1000𝑦.

A weakness of this approach stems from the construction of the

data matrix used to produce candidate invariants for an arbitrary

phase ś it would require constructing potentially large unrollings.

We will explore a way around this weakness in Sect. 6.

3.4 Inductive Subset Extraction

In this paper, we target invariants composed from multiple lemmas

i.e., Inv = ℓ0 ∧ . . . ∧ ℓ𝑛 , where each ℓ𝑖 passes the initiation and

consecution checks from Def. 3.3. Thus, invariants can be found by

an enumeration of candidate formulas and finding a subset of them,

such that their conjunction fulfills the third (safety) check as well.

Given an initial set of formulas (either captured in a predetermined

grammar [50, 54], obtained from syntax [18], or behaviors [19, 47]),

an enumerative approach aims at gradually narrowing it to a subset

the conjunction of which is a solution. The Houdini algorithm,

shown in Algorithm 2, finds formulas that pass the initiation and

then continues to iteratively remove bad candidates using so called

counterexamples-to-induction. If the remaining candidates are not

consistent with the set of error states, the program is safe.

Example 3.6. Let Cands = {𝑧 = 0, 𝑧 ≥ 0} for Example 3.4, then

Algorithm 2 iterates two times. First it finds that 𝑧 = 0 is not

inductive, e.g., by finding model M = {𝑥 ↦→ 5000, 𝑦 ↦→ 5, 𝑧 ↦→

0, 𝑥 ′ ↦→ 5001, 𝑦′ ↦→ 5, 𝑧′ ↦→ 1}, and it keeps only 𝑧 ≥ 0 because

M (𝑧′) ≥ 0. Second, it finds that 𝑧 ≥ 0 is inductive (and returned as

a lemma), which is, however, not enough for proving the safety.

While the algorithm is useful for finding conjunctive invariants,

its weakness is in a too aggressive weakening (i.e., keeping or

dropping the entire candidate). However, the dropped candidate
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Algorithm 2: Houdini(𝑃, Bad,Cands), cf. [23]

Input: 𝑃 = ⟨Vars ∪Vars′, Init, Tr⟩: program; Bad: error states

Cands ∈ 2Ψ

Output: res ∈ ⟨safe, unknown⟩, set Lemmas ⊆ Cands: of

inductive lemmas

1 Cands← {𝑐 ∈ Cands | Init (Vars) =⇒ 𝑐 (Vars)};

2 while ∃M , s.t.

M |= Cands(Vars) ∧ Tr (Vars,Vars′) ∧ ¬Cands(Vars′) do

3 Cands← {𝑐 ∈ Cands | M |= 𝑐 (Vars′)};

4 if Cands(Vars) ∧ Bad (Vars) =⇒ false then

5 return safe, Cands;

6 return unknown, Cands;

𝑧 = 0 can be weakened in another way, by adding a phase guard,

as in Fig. 5. Our novel weakening strategy is discussed in Sect. 5.

4 PHASE REACHABILITY TREE

The reason for control-flow divergence can often be extracted di-

rectly from transition relations3. When a transition relation is in

a disjunctive normal form (DNF), then each disjunct represents a

group of program executions belonging to the same phase. For de-

terministic programs, these disjuncts have conditions on the states

at the beginning of a transition (usually called source states), that

has to be true for all executions in the corresponding phase. These

conditions are quite important for our invariant synthesis since

they can be used to weaken candidates that do not pass a Houdini

run, and thus we call them phase guards. Obtaining phase guards

in our approach proceeds in two stages. First, our algorithm com-

putes a finite number of phases from the transition relation using

quantifier elimination (QE). The resulting formulas represent phase

reachability information that are arranged in a decision tree (DT),

and lastly strengthened based on their position in the DT to reflect

some context-specific information.

4.1 Model-Based Projections as Phase Guards

Informally, a guard is a description of a subset of source states that

need to be true for all transitions of the phase. Instead of converting

a transition relation to DNF, and then applying QE to get a guard

for each disjunct, our approach picks one representative transition

of a phase and identifies its phase guard. A transition is represented

by a model of the Tr formula over source and destination vari-

ablesVars andVars′. Thus, we have to compute an MBP of formula

∃Vars′ . Tr (Vars,Vars′) based on that model.

Example 4.1. Recall Example 3.4, in which the transition relation

is as follows.

𝑥 ′ = 𝑥 + 1 ∧ 𝑦′ = 𝑦 ∧ 𝑧′ = ite(𝑦 = 𝑥 div 1000, 𝑧 + 1, 𝑧)

3The main benefit of conducting an analysis over this symbolic encoding (vs over
the program’s source code) is that the approach is language-agnostic. Furthermore,
is is also insensitive to the verification frontend that does the encoding. Specifically,
tools often perform various program transformations, including ones that change the
control-flow structure, sometimes drastically. Thus, the phase reachability information
obtained from the source-code level may not be adequate at the level of the symbolic
encoding.

Algorithm 3: AllMBPVars′ (M , 𝜑)

Input: 𝜑 (Vars,Vars′): formula

Output:MBPs:Vars′-free set of Model-Based Projections

1 MBPs← ∅;

2 while true do

3 if ∃M |= 𝜑 (Vars,Vars′) ∧
∧

𝑖
¬MBPs𝑖 (Vars) then

4 MBPs← MBPs ∪ {MBPVars′ (M , 𝜑 (Vars,Vars′))};

5 else

6 returnMBPs;

The formula is satisfied by the model M = {𝑥 ↦→ 0, 𝑦 ↦→ 1, 𝑧 ↦→

0, 𝑥 ′ ↦→ 1, 𝑦′ ↦→ 1, 𝑧′ ↦→ 0}, thus we proceed to generating an MBP.

Algorithm 1 then splits the transition relation into literals:

literals(Tr) = {𝑥 ′ = 𝑥 + 1, 𝑧′ = 𝑧 + 1, 𝑧′ = 𝑧,𝑦′ = 𝑦,

𝑦 < 𝑥 div 1000, 𝑦 = 𝑥 div 1000, 𝑦 > 𝑥 div 1000}

It is easy to see that after collecting literals that are satisfied by M

and conjoining them, we can get an under-approximation of the

transition relation that only describes the first phase:

𝑦 > 𝑥 div 1000 ∧ 𝑥 ′ = 𝑥 + 1 ∧ 𝑧′ = 𝑧 ∧ 𝑦′ = 𝑦

Lastly, by eliminating 𝑥 ′, 𝑦′, and 𝑧′, we get the first phase guard

𝑦 > 𝑥 div 1000.

To obtain all of the guards, we repeat the process of gathering

models of Tr that are not covered by the previously generated

guards, as presented in Algorithm 3.

4.2 Organizing Phase Guards in a Decision Tree

It is convenient to represent phases in a decision tree, that is com-

puted exactly once, prior to the invariant synthesis run. We in-

troduce the notion of a phase-reachability tree to approximate all

possible execution scenarios, assuming that the phase guards are

already computed. Intuitively, it gathers sequences of phases that

could be visited by a program: the feasibility of every transition is

checked by an SMT solver using the symbolic encoding of 𝑃 .

Definition 4.2. Given a program 𝑃 = ⟨Vars ∪Vars′, Init, Tr⟩, a

phase-reachability tree DTP is a quadruple ⟨𝑉 , 𝐸, 𝑟, 𝑝⟩ of sets of

vertices from some set 𝑉 , edges 𝐸 ⊆ 𝑉 × 𝑉 , a root 𝑟 ∈ 𝑉 , and a

vertex-labeling function 𝑝 : 𝑉 → Ψ such that:

• for all ⟨𝑟, 𝑣⟩ ∈ 𝐸: formula Init (Vars) ∧ 𝑝 (𝑣) (Vars) is satisfiable,

• for all ⟨𝑣1, 𝑣2⟩ ∈ 𝐸, where 𝑣1 ≠ 𝑟 :

𝑝 (𝑣1) (Vars) ∧ Tr (Vars,Vars
′) ∧ 𝑝 (𝑣2) (Vars

′) is satisfiable,

• for all paths 𝜋 = ⟨𝑟, 𝑣1, . . . , 𝑣𝑛⟩ in DTP , for every two vertices,

𝑣𝑖 , 𝑣 𝑗 ∈ 𝜋 : formulas 𝑝 (𝑣𝑖 ) and 𝑝 (𝑣 𝑗 ) are equisatisfiable only if

𝑖 = 𝑗 .

Every path 𝜋 in DTP corresponds to (a prefix) of some execution

of 𝑃 , possibly spurious. While the DTP gives us incomplete infor-

mation about program traces, it is often sufficient to derive phase

invariants, and it is cheap to compute. Note that getting the most

precise phase-reachability information for a program could be diffi-

cult (even impossible) since it may require knowing some auxiliary

(helper) invariants. However, even a coarse DTP fits well for the

purposes of our approach, which reasons automatically in terms
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Algorithm 4: StrenDT(𝑃,DTP )

Input: 𝑃 = ⟨Vars ∪Vars′, Init, Tr⟩: program,

DTP = ⟨𝐸,𝑉 , 𝑟, 𝑝⟩: phase-reachability tree

Output: DTP : augmented phase-reachability tree

1 for ⟨𝑢, 𝑣⟩ ∈ 𝐸 do

2 if 𝑢 = 𝑟 then

3 𝜑 ← abduce(Init (Vars) =⇒ 𝑝 (𝑣) (Vars));

4 else

5 𝜑 ← abduce(𝑝 (𝑢) (Vars) ∧ Tr (Vars,Vars′) ∧

¬𝑝 (𝑢) (Vars′) =⇒ 𝑝 (𝑣) (Vars′));

6 if 𝜑 ≠⇒ false and

𝜑 (Vars) ∧ Tr (Vars,Vars′) =⇒ 𝜑 (Vars′) then

7 for𝑤 ∈ subtree(DTP , 𝑣) do

8 𝑝 (𝑤) ← 𝑝 (𝑤) ∧ 𝜑 ;

of batches of loop iterations and discovers some łlocally inductivež

facts about phases (see Sect. 5).

We slightly abuse the notation, and for an edge ⟨𝑢, 𝑣⟩, we refer to

the phase associated with 𝑢 (resp. 𝑣) as to a łparentž (resp. łchildž)

phase. Construction of the DTP from the set of phase guards 𝐺

returned byAlgorithm 3 is rather straightforward: it poses a number

of SMT checks, as shown in Def. 4.2, given a set of phase guards

and the symbolic encoding of 𝑃 . At each łparentž phase 𝑣𝑖 and

each potential łchildž phase 𝑣 𝑗 from some𝐺𝑖 ⊆ 𝐺 , the reachability

is checked by posing a satisfiability query to an SMT solver. If

successful, edge ⟨𝑣𝑖 , 𝑣 𝑗 ⟩ is added to 𝐸, and the construction process

recurses for 𝑣 𝑗 and 𝐺𝑖 \ {𝑣 𝑗 }. Unsatisfiability of some reachability

formula guarantees that it is impossible in general to have a phase

𝑣 𝑗 right after 𝑣𝑖 .

Note that by construction, some elements of the initial 𝐺 may

appear in the final DTP several times, but only once per path. That

is, each path 𝜋 captures only phase guards without repetitions:

even if a phase of 𝑃 is visited multiple times during 𝜋 , the phase

guard occurs in 𝜋 exactly once. In the case of interleaving phases,

traversal of the DTP łcyclesž through 𝜋 . Thus, the constructed DTP
always has a finite depth which makes it convenient for the further

synthesis process.

4.3 Context-Specific Phase Guard
Strengthening

While our primary source of phase guards is the MBP procedure,

in some cases, the discovered formulas are not strong enough to be

phase guards. Our motivating example illustrates this case. Recall

Example 4.1, in which formula 𝑦 > 𝑥 div 1000 is generated. How-

ever, if we use it solely (i.e., without conjoining with 𝑦 > 0) in the

phase guard for some invariants, our algorithm will not be able to

produce the desired invariants, as in Fig. 5.

Intuitively, phase guard strengthening is needed to bring more

context information into the phases, e.g., if a value of some vari-

able(s) is unknown at the initial state, then the loop may have

several different phase scenarios, depending on the ranges of possi-

ble values of that variable(s). In order to bring this specific phase-

reachability information to invariants, we perform strengthening of

DTP after it is generated from MBPs in Sect. 4.2.

Algorithm 4 gives pseudocode of the algorithm. It has two parts:

discovery of strengthening, and its propagation to the subtree. The

algorithm traverses the tree top-to-bottom and finds edges, where

the end a łparentž phase does not imply the beginning of the łchildž

phase. The main idea is to infer a (reasonably weaker) condition

under which the łchildž phase is reachable, and then add it to the

phase guard of the łchild phasež. This is commonly achieved by

abduction [15], and our pseudocode uses the following implemen-

tation based on quantifier elimination:

abduce(𝐴(Vars) =⇒ 𝐵(Vars))
def
= QE(∀Vars \𝑊 .𝐴 =⇒ 𝐵)

where𝑊 is a subset ofVars, which can be found heuristically. In our

implementation, we enumerate different𝑊 until abduction results

in a formula, that is non-trivial and locally inductive. Then it is

conjoined to all phase guards associated with the vertices in the

subtree.

Example 4.3. For Example 4.1, the need of strengthening of the

phase guard is revealed by solving the validity of formula:

𝑥 = 0 ∧ 𝑧 = 0 =⇒ 𝑦 > 𝑥 div 1000

Because the implication does not hold, we aim at finding a (reason-

ably weaker) predicate 𝜑 to be conjoined with the antecedent to

make the implication valid. Because there is only one model for

formula 𝑥 = 0 ∧ 𝑧 = 0, then constraining 𝑥 or 𝑧 makes no sense.

Thus, the abducible predicate 𝜑 has to be applied to variable 𝑦, and

it can be found by QE over the following formula:

¬QE(∃𝑥, 𝑧 . (𝑥 = 0 ∧ 𝑧 = 0 ∧ 𝑦 ≤ 𝑥 div 1000)) .

The resulting formula 𝑦 > 0 is locally inductive,

Strengthening produced this way is not unique, and in principle

this procedure may be repeated several times, that can further be

exploited by several (maybe, parallel) runs of the main algorithm

(see the next section). It is also possible to infer strengthening of

DTP beginning from the query in the reverse order. We omit these

extensions of our approach in the interest of saving space.

5 INVARIANT SYNTHESIS BASED ON PHASE
REACHABILITY TREE

In this section, we present our core contribution: an automated

algorithm to discover multi-phase invariants. It relies on the phase-

reachability tree DTP , precomputed (and possibly strengthened) as

shown in Sect. 4. The main insights are to search for candidates,

that do not pass the initiation/inductiveness checks in Houdini, to

attempt to weaken them using phases from DTP , and (importantly),

to generate new candidates for the next phases. While this section

focuses on conveying the main ideas, the two important design

choices for new candidate generation are deferred to Sect. 6.

5.1 Overview

Algorithm 5 gives an overview of our approach. It takes as input

a set of candidates for invariants, which can be originated from

any external source like data learning (recall Sect. 3.3), SyGuS,

e.g. [18, 50, 54], or any set of predetermined templates.

The algorithm then invokes Algorithm 2 to compute an inductive

subset of lemmas from the given set of candidates. If the conjunc-

tion of lemmas is safe, the program is correct, and the algorithm
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Algorithm 5: ImplCheck(𝑃,Cands, PhaseInvs,DTP ).

Input: 𝑃 = ⟨Vars ∪Vars′, Init, Tr⟩: program; Cands ∈ 2Ψ ,

PhaseInvs ∈ 2Ψ , DTP : precomputed

phase-reachability tree

Output: inductive Lemmas ∈ 2Ψ

1 ⟨res, Lemmas⟩ ← Houdini(𝑃,Cands ∪ PhaseInvs);

2 if res = safe then return safe;

3 if Cands \ Lemmas = ∅ then return unknown;

4 pick ℓ ∈ Cands \ Lemmas;

5 PhaseInvs←

WeakenAndPropagate(𝑃, ℓ,DTP ) ∪ PhaseInvs;

6 return ImplCheck(𝑃,Cands \ {ℓ}, PhaseInvs,DTP );

Algorithm 6:WeakenAndPropagate(𝑃, ℓ,DTP ).

Input: 𝑃 = ⟨Vars ∪Vars′, Init, Tr⟩: program; ℓ ∈ Ψ: an

invariant candidate; DTP = ⟨𝑉 , 𝐸, 𝑟, 𝑝⟩:

phase-reachability tree

Output: Cands ∈ 2Ψ

1 Cands← ∅;

2 for {𝑣1, . . . , 𝑣𝑛} ∈ paths(DTP ) do

3 for 𝑖 = 1, . . . 𝑛 do

4 ℓ𝑖 ← ℓ ;

5 for 𝑗 = (𝑖 − 1), . . . , 0 do

6 ℓ𝑗 ← BwPropagate(𝑃,ℓ𝑗+1, 𝑝 (𝑣 𝑗 ), 𝑝 (𝑣 𝑗+1), 𝑘);

7 for 𝑗 = (𝑖 + 1), . . . , 𝑛 do

8 ℓ𝑗 ← FwPropagate(𝑃,ℓ𝑗−1, 𝑝 (𝑣 𝑗−1), 𝑝 (𝑣 𝑗 ), 𝑘);

9 Cands← Cands ∪
{

𝜆Vars . (𝑝 (𝑣𝑚) (Vars) =⇒ ℓ𝑚 (Vars))
}𝑛
𝑚=0

;

10 return Cands;

terminates (line 2). Otherwise, it picks a candidate ℓ that failed initi-

ation (1) and/or consecution (2), then searches for a suitable phase

among vertices of DTP that can weaken ℓ (line 4). The weakening

and new candidate generation is performed in Algorithm 6. Lastly,

a set of new phase candidates is unified with the set of candidates

to be checked by Houdini in the next recursive call of Algorithm 5.

A phase lemma has the form of implication, and it is guessed in

Algorithm 6 (line 9) by composing a guard, as the left-hand side

of the implication, and a formula ℓ , taken either from the initial

candidate set or derived from it as the right-hand side. Algorithm 6

is iterative in nature: it generates sequences of phase candidates,

following the actual paths of DTP . That is, if a phase candidate is

created for the initial candidate ℓ and an 𝑖th phase of some path 𝜋 ,

then the algorithm seeks to propagate ℓ backward to the (𝑖 − 1)th

phase of 𝜋 , forward to (𝑖 +1)th phase, and if successful, even further.

Example 5.1. Recall Example 3.6 and failed candidate 𝑧 = 0

for Example 3.4. Following the rightmost path of DTP in Fig. 3,

the algorithm guesses the first conjunct of invariant in Fig. 5 and

proceeds to the next two phases.

Soundness of our algorithm is immediate: since based on Hou-

dini, it only terminates with safewhen all the conditions of Def. 3.3

are fulfilled by an external SMT solver.

Theorem 5.2 (Termination). Assuming termination of Houdini

and of the SMT solver, then Algorithm 5 will terminate.

Given an initial set of candidate invariants, 𝑁 , and a formula Tr ,

there can only be a finite number of phase guards, 𝑀 , produced

by quantifier elimination. These two pieces are the input to Al-

gorithm 5. On each iteration a candidate, ℓ , is picked and sent to

Algorithm 6 to attempt to connect it with a phase, line 9 of Algo-

rithm 6. The loop in Algorithm 6 will terminate when all phases of

the Tr have been explored (i.e., all paths in DTP have been explored,

of which there can be only a finite many), or when a candidate has

been matched with its appropriate phase.

There are two conditions for Algorithm 5 to terminate, both of

which are guaranteed. Either Houdini returns with a result safe

(line 2), or the algorithm runs out of candidates to check and returns

unknown (line 3). The algorithm considers at most a polynomial

number of distinct candidates, meaning if no safe invariant is

found, the result unknown is returned after the set of candidates

is exhausted.

5.2 Optimizations

For readability purposes, Algorithm 6 is presented in an oversimpli-

fied form, so a direct implementation of which could be inefficient.

Specifically, two outer nested loops attempt to match candidate ℓ

with every possible phase (often, several times). In practice, there

are many optimization opportunities (which we have in the imple-

mentation) that check the consistency of ℓ and each phase 𝑝 (𝑣𝑖 )

before creating candidates. In particular, before proceeding to line 4,

we require the following.

• For the head 𝑣1 of every path, we require that

Init (Vars) ∧ 𝑝 (𝑣1) (Vars) =⇒ ℓ (Vars) is valid since otherwise the

initiation condition (1) would not hold.

• Similarly, for every 𝑣𝑖 , we require that 𝑝 (𝑣𝑖 ) (Vars) ∧ ℓ (Vars) ∧

Tr (Vars,Vars′) ∧ 𝑝 (𝑣𝑖+1) (Vars
′) is satisfiable (we do not use a

stronger constraint involving the validity here since we may

not know the precise reachability information at an arbitrary

phase).

Additionally:

• Every edge of DTP needs to be processed only once (for some

path), and should be skipped in the other paths.

• Lemma propagation may be ineffective, i.e., depending on the

strategy (to be presented in Sect. 6), it may return true or false

candidates. The loops at lines 6 and 8 break in this case, and the

algorithm proceeds to a new phase or candidate.

In practice, it is rarely the case that many candidates require

all iterations of triple-nested loops in Algorithm 6. Recall, that

input candidates to this algorithm are failed by Houdini, so our

expectation then is that they will work only on a subset of phas-

es/paths. Thus, in practice, the aforementioned optimizations are

often sufficient to prevent the algorithm from diverging.

6 SYNTHESIS OF PHASE LEMMAS

In this section, we describe our lemma synthesis strategies for

Algorithm 6 that are specifically tailored to a more semantically-

aware search, based respectively on candidate propagation and

data learning. These two approaches are used in Algorithm 6 at

613



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Daniel Riley and Grigory Fedyukovich

𝑥 = 0 ∧ 𝑦 = 767976 ∧ 𝑧 = 0 =⇒ Inv(𝑥,𝑦, 𝑧)

Inv(𝑥,𝑦, 𝑧) ∧ 𝑥 ′ = 𝑥 + 1 ∧ 𝑦′ = 𝑦 − 1∧

𝑧′ = ite((𝑥 − 𝑦) mod 3 = 1, 𝑧 + 3, 𝑧) =⇒ Inv(𝑥 ′, 𝑦′, 𝑧′)

Inv(𝑥,𝑦, 𝑧) ∧ 𝑥 ≥ 280275 ∧ ¬(𝑧 ≥ 280275) =⇒ false

Figure 6: Transition system encoding.

the call Fw/BwPropagate. The difference between these can be

treated as a demarcation between a more-general instantiation of

our algorithm (Sect. 6.1) and the one specific to arithmetic theories

(Sect. 6.2).

6.1 Phase Propagation using Quantifier
Elimination

Intuitively, once a candidate invariant and its phase guard is cre-

ated, we can try to propagate it to the next phase, i.e., to a loop

iteration where another phase guard holds, based on our DTP . For

any background theory that admits Quantifier Elimination (QE),

Algorithm 6 can propagate candidates using Def. 6.1.

Definition 6.1. Given a transition relation Tr (Vars,Vars′), and a

phase candidate𝑔(Vars) =⇒ ℓ (Vars), and a next phase guard g𝑛𝑒𝑥𝑡 ,

the FwPropagate method computes a candidate as follows:

QE(∃Vars . Tr (Vars,Vars′) ∧ g(Vars)∧

ℓ (Vars) ∧ g𝑛𝑒𝑥𝑡 (Vars
′)) [Vars/Vars′]

The BwPropagate method computes a candidate as follows:

QE(∀Vars′ . Tr (Vars,Vars′) ∧ g𝑛𝑒𝑥𝑡 (Vars) ∧ g(Vars
′) =⇒ ℓ (Vars′))

Example 6.2. Fig. 6 gives a program with three phases, and its

inductive invariant is as follows.

Inv ↦→ 𝜆𝑥,𝑦, 𝑧 . 𝑥 + 𝑦 = 767976∧

(𝑥 − 𝑦) mod 3 = 0 =⇒ 𝑥 = 𝑧∧

(𝑥 − 𝑦) mod 3 = 1 =⇒ 𝑥 − 𝑧 = 2∧

(𝑥 − 𝑦) mod 3 = 2 =⇒ 𝑥 − 𝑧 = 1

Forward reasoning begins with an analysis of the initial state:

𝑥+𝑦 = 767976 and 𝑥 = 𝑧 directly follow from the initial assignments

to the variables. While the former is a global invariant in contrast,

the latter needs the phase guard (𝑥 − 𝑦) mod 3 = 0. In order to

propagate this candidate forward, we note that under this phase, 𝑥

grows by one and 𝑧 does not change, thus if 𝑥 was equal to 𝑧 then

𝑥 ′ − 𝑧′ = 1, giving us the next candidate 𝑥 − 𝑧 = 1.

In practice, propagated candidates are often too strong because

they describe exactly what happens in the next step after switching

to a new phase. In many other cases, helper invariants need to be

discovered prior to quantifier elimination, otherwise the synthesis

procedure does not have enough information about the switching

state. This motivates us to design alternative strategies for synthe-

sizing phase lemmas in certain theories.

6.2 Fast-Forwarding to Data Candidates

Numeric theories enjoy well-known approaches like [60] to data-

driven invariant generation. Gathering data for the early phases of

Algorithm 7: FwPropagate(𝑃, Inv(Vars), g, g𝑛𝑒𝑥𝑡 , 𝑘):

data gathering at arbitrary point.

Input: 𝑃 = ⟨Vars ∪Vars′, Init, Tr⟩: program;

Inv: invariant; g: phase-guard; g𝑛𝑒𝑥𝑡 : the next

phase-guard; 𝑘 : unrolling bound

Output: 𝐷𝑀 : data matrix to be used for data learning

1 unrl ← g(Vars) ∧ Inv(Vars) ∧ g𝑛𝑒𝑥𝑡 (Vars
′);

2 for 𝑐 ∈ [1, 𝑘] do

3 unrl ← unrl ∧ Tr (Vars (𝑐) ,Vars (𝑐+1) );

4 let M be s.t. M |= unrl;

5 if M = ∅ then

6 return ∅;

7 for 𝑐 ∈ [1, 𝑘] do

8 if M |= g𝑛𝑒𝑥𝑡 (Vars
(𝑐) ) then

9 𝐷𝑀 ← addRow(𝐷𝑀,M (Vars (𝑐) ));

10 candFromGaussJordan(𝐷𝑀);

11 return;

an execution is trivial since the unrolling begins from the Init state,

recall Sect. 3.3. A naive approach would unroll the program while

the first phase guard holds. The resulting matrix would produce a

candidate lemma for the phase, however, this is not scalable due to

the taxing nature of large program unrollings. To solve this problem,

we produce useful data in a more economical way with the notion

of łfast-forwardingž.4

To start, a trace is produced as in Algorithm 7 (line 3) of some

length 𝑘 5. Then the supporting lemmas 6, a phase guard, and the

next phase guard are added (line 1). By providing a phase guard

(g(Vars) in (4)) we are requiring the unrolling to begin at a particular

point in the execution. Importantly, we also provide Inv(Vars), all

lemmas learned so far, and the phase lemmas associated with g.

g(Vars) ∧ Inv(Vars) ∧ Tr (Vars,Vars′) ∧ g𝑛𝑒𝑥𝑡 (Vars
′)∧ (4)

Tr (Vars′,Vars′′) ∧ . . . ∧𝑇𝑟 (Vars (𝑘−1) ,Vars (𝑘) )

An invariant for the program in the example from Fig.7 requires

a supporting lemma to discover, and must be provided to the solver

before an unrolling begins (line 1 of Algorithm 7). Otherwise the

invalid matrix No Guard or Lemmas in Fig. 8 may be produced.

If the solver is provided with the lemma 𝑥 ≥ 𝑦 (line 1), then it

can produce valid information to create the other two matrices in

Fig. 8, one for each phase. Each reveals a phase lemma that together

with their phase guard verifies the program.

The Even phase matrix has a basis vector of
(

−1
2

)

which yields

the phase lemma 𝑥 = 2𝑦. Applying the next guard, 𝑥 mod 2 = 1

yields the phase lemma 𝑥 = 2𝑦 − 1. The algorithm then terminates

with the invariant:

Inv ↦→ 𝜆𝑥,𝑦 . 𝑥 mod 2 = 0 =⇒ 𝑥 = 2𝑦∧

𝑥 mod 2 = 1 =⇒ 𝑥 = 2𝑦 − 1

4A łfast-backwardingž concept is defined similarly and skipped in the interest of space.
5Our implementation uses a value of 10 for 𝑘 . This is done to keep unrollings small for
performance reasons. However values of up to 30 have been tried with no improvement
to the outcomes.
6Supporting lemmas are the previously learned lemmas from earlier iterations.
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𝑥 = 0 ∧ 𝑦 = 0 =⇒ Inv(𝑥,𝑦)

Inv(𝑥,𝑦) ∧ 𝑥 ′ = 𝑥 + 1∧

𝑦′ = ite(𝑥 mod 2 = 0, 𝑦 + 1, 𝑦) =⇒ Inv(𝑥 ′, 𝑦′)

Inv(𝑥,𝑦) ∧ 𝑥 = 20000 ∧ ¬(𝑦 = 10000) =⇒ false

Figure 7: Transition system with alternating phases.

No Grd or Lms
x y

-1 1

1 2

3 3

Even phase

x y

2 1

4 2

6 3

Odd phase

x y

1 1

3 2

5 3

Figure 8: Matrices produced for each phase of Fig. 7.

The importance of our łfast-forwardingž technique lies in its

ability to synthesize difficult to infer lemmas, and associate them

with their phase. The expression 𝑥 = 2𝑦 − 1 is such an example,

since on its own it is not easy to discover, and then to couple it with

the correct phase guard is a difficult task. Fast-forwarding tackles

those two challenges with the data learning approach connected to

a particular phase.

7 IMPLEMENTATION

We have implemented our algorithm, called ImplCheck, in the

latest version of the FreqHorn tool [18]. FreqHorn follows the

SyGuS paradigm to guess-and-check for invariants derived from

syntax and data. We leverage this design to start the ImplCheck

algorithm. The decision tree containingMBPs is built in the early

stages of an execution, and only once in an execution.

Candidates that fail the initial inductiveness check (2) move into

Algorithm 5, where we identify the phase that the candidate belongs

to in Algorithm 6. Algorithm 6 takesMBPs from the decision tree to

test as phase-guards, described in Sect. 4. If a guard is successfully

found, the guard and candidate are made into a phase-invariant in

the form of implication.

New candidates are also discovered by our data learning tech-

nique from Sect. 6.2. We use phase guards and learned lemmas to

create an unrolling and then obtain a data matrix from the unrolling.

With łfast-forwardingž we are able to probe a particular phase of

the program and connect lemmas discovered by the data learner

with the phase guard as a new phase invariant.

Additionally, we leverage the candidate propagation feature of

FreqHorn but make it more phase-aware (recall Sect. 6.1), which

allows for lifting successful candidates to the next phase.

8 EVALUATION

We are interested in answering the following research questions:

• RQ1: How effective is ImplCheck in solving multi-phase bench-

marks compared to state-of-the-art CHC solvers?

• RQ2: How crucial are data learning via fast-forwarding and MBP

strengthening to solving multi-phase benchmarks?

• RQ3: How does ImplCheck perform on a large set of well studied

benchmarks?

Throughout this section we discuss these questions in the context

of our experimental results. The results are summarized in Tab. 1.

Experimental Results. ImplCheck has been compared against

CHC solvers FreqHorn [18], PCSat [58], IC3IA [13], GSpacer [38],

Spacer [37], Hoice [10], Eldarica [32], and Golem [8], and SyGuS

solvers LoopInvGen [52], and CVC5 [54]. Since the input to all of

these tools adheres to the SMT-LIB2 format (or the sister SyGuS-

format), we do not compare to other software verification tools that

would require additional symbolic execution/encoding of programs

to symbolic constraints, making the experimental comparison less

fair.

RQ1. We analyzed the performance of ImplCheck on 54 safe

multi-phase benchmarks previously studied by Golem [8]. These

programs are over integers and have single loops with a variety of

phase structures.

With a 5 minute timeout, ImplCheck can solve 44 of the 54,

the largest number of all the tools in the comparison. FreqHorn

can solve 28. Eldarica performed the best out of the comparison

tools, solving 25 of the multi-phase benchmarks. Eldarica’s ability

to solve these likely comes from its use of disjunctive interpola-

tion [56]. GSpacer solved 19, Hoice, and Golem each solved 17.

PCSat and IC3IA each solved 15 respectively, while CVC5 and

Spacer solved 11 and 10. Finally, LoopInvGen solved 9. These

results are displayed in Table 1.

There are 10 benchmarks that are only solved by ImplCheck, and

one such example for the other tools, which is uniquely solved by

Golem. These results show that ImplCheck is capable of verifying

a variety of phase structures.

RQ2. We compared the performance of ImplCheck in various

configurations, isolating the subsystems of the algorithm to high-

light their impact. A summary of the results is in Table 2, which

displays the lemma synthesis method, the direction of propagation,

the number solved, the average and the median time to solve.

The subsystems are described in Sect. 4 - 6. In summary, Phase-

Data generates lemmas using the fast-forwarding data learning

technique, PhaseProp propagates lemmas across phases, and Stren-

MBP strengthens the guards in the DT. FwdPropagate and Bwd-

Propagate determine the direction of traversal through the pro-

gram. By default both forward and backward propagation are en-

abled, but we explicitly disable one to parse out their impact.

Data learning with fast-forwarding, PhaseData, turns out to be

themost impactful subsystem on its own. This feature, with forward

propagation, solves 40 benchmarks. PhaseProp with backward

propagation solves a similar number of benchmarks as forward,

and proves to be a useful tactic for some cases, with two examples

solved by Bwd that are not solved with Fwd.

The combination of the three options, PhaseData, PhaseProp,

and StrenMBP, along with FwdPropagate solves the highest

number of benchmarks at 41. There is a noticeable time cost across

the tests however, with the median solve time around two seconds

instead of below one second. PhaseData is able to solve many

more of the examples below one second than the three options

together can.

It is worth noting that even the worst configuration of Impl-

Check, PhaseData Bwd, still outperforms all of the tools used for

comparison.
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Table 1: Timings in seconds (𝜖 stands for a runtime less than a second;∞ stands for not solved).

Benchmark ImplCheck FreqHorn GSpacer Spacer IC3IA LoopInvGen Eldarica CVC5 Hoice PCSat Golem

s_split_01 𝜖 1.88 4.38 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s_split_02 𝜖 6.91 𝜖 62.10 ∞ ∞ ∞ ∞ 𝜖 ∞ 188.31

s_split_03 1.63 73.55 ∞ ∞ ∞ ∞ 1.06 ∞ 𝜖 14.39 ∞

s_split_04 2.47 1.92 𝜖 ∞ ∞ ∞ 3.48 ∞ 5.29 ∞ ∞

s_split_05 𝜖 𝜖 𝜖 𝜖 𝜖 𝜖 𝜖 2.40 𝜖 1.42 𝜖

s_split_06 𝜖 ∞ 2.35 ∞ ∞ ∞ 3.63 ∞ ∞ 14.54 ∞

s_split_07 𝜖 𝜖 𝜖 ∞ 𝜖 ∞ 1.11 20.50 𝜖 1.79 ∞

s_split_08 2.83 2.83 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1.35 ∞

s_split_09 𝜖 3.89 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s_split_10 𝜖 10.84 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s_split_11 𝜖 37.60 ∞ ∞ ∞ ∞ ∞ ∞ 𝜖 ∞ ∞

s_split_12 𝜖 18.97 ∞ ∞ ∞ ∞ 1.22 ∞ ∞ ∞ ∞

s_split_13 ∞ ∞ ∞ ∞ 𝜖 𝜖 𝜖 10.37 𝜖 1.74 𝜖

s_split_14 ∞ ∞ ∞ ∞ ∞ ∞ 26.38 ∞ ∞ ∞ 18.60

s_split_15 1.41 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s_split_16 10.93 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s_split_17 1.07 18.15 ∞ ∞ 𝜖 ∞ 7.29 ∞ ∞ 2.62 3.26

s_split_18 ∞ ∞ 𝜖 ∞ ∞ ∞ 2.75 ∞ 𝜖 31.39 𝜖

s_split_19 𝜖 ∞ 𝜖 𝜖 𝜖 21.98 𝜖 ∞ ∞ ∞ 𝜖

s_split_20 𝜖 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s_split_21 𝜖 𝜖 ∞ 53.81 21.31 ∞ 9.88 ∞ 𝜖 ∞ 𝜖

s_split_22 2.62 73.15 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s_split_23 𝜖 𝜖 𝜖 ∞ 𝜖 1.89 1.52 𝜖 𝜖 1.51 𝜖

s_split_24 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 189.53

s_split_25 ∞ ∞ ∞ ∞ ∞ ∞ 9.19 𝜖 ∞ ∞ 𝜖

s_split_26 𝜖 𝜖 40.40 ∞ 𝜖 1.09 ∞ 𝜖 ∞ 1.24 ∞

s_split_27 1.96 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s_split_28 𝜖 54.00 ∞ 155.19 66.03 34.30 1.30 286.28 ∞ ∞ ∞

s_split_29 108.69 ∞ 21.88 ∞ ∞ ∞ 32.18 ∞ ∞ ∞ ∞

s_split_30 ∞ ∞ ∞ ∞ 3.17 ∞ ∞ ∞ ∞ ∞ 𝜖

s_split_31 4.72 4.72 ∞ ∞ ∞ ∞ 1.29 ∞ ∞ ∞ ∞

s_split_32 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s_split_33 𝜖 ∞ ∞ ∞ ∞ 2.15 ∞ ∞ ∞ ∞ ∞

s_split_34 1.99 ∞ 𝜖 126.86 253.89 3.94 5.24 ∞ 4.51 264.58 ∞

s_split_35 ∞ ∞ 𝜖 ∞ ∞ ∞ 1.55 ∞ ∞ ∞ ∞

s_split_36 𝜖 𝜖 𝜖 ∞ 𝜖 𝜖 1.08 𝜖 𝜖 1.24 𝜖

s_split_37 2.83 ∞ 𝜖 𝜖 𝜖 ∞ 13.94 ∞ 107.56 ∞ 𝜖

s_split_38 92.12 6.90 𝜖 ∞ 𝜖 ∞ 1.09 ∞ 𝜖 1.86 𝜖

s_split_39 𝜖 𝜖 8.48 44.05 2.08 ∞ 2.05 50.78 𝜖 1.37 𝜖

s_split_40 ∞ ∞ ∞ 153.13 ∞ ∞ ∞ ∞ ∞ ∞ 4.44

s_split_41 𝜖 139.37 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s_split_42 𝜖 ∞ 𝜖 ∞ ∞ ∞ 3.61 11.33 𝜖 1.56 ∞

s_split_43 3.15 129.51 ∞ ∞ ∞ ∞ ∞ ∞ 𝜖 ∞ ∞

s_split_44 1.22 104.14 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s_split_45 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s_split_46 𝜖 255.42 276.28 30.23 ∞ ∞ 𝜖 33.33 ∞ ∞ ∞

s_split_47 1.65 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s_split_48 𝜖 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s_split_49 𝜖 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s_split_50 3.64 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s_split_51 1.22 70.94 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s_split_52 𝜖 88.14 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s_split_53 3.24 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

s_split_54 𝜖 58.05 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Total Solved 44 28 19 10 15 9 25 11 17 15 17

Uniquely Solved 10 0 0 0 0 0 0 0 0 0 1

Avg Time/Solved 6.18 41.48 18.78 62.58 23.13 7.45 5.38 37.77 7.07 22.84 23.80

Median Time/Solved 𝜖 8.88 𝜖 48.93 𝜖 1.89 1.55 10.37 𝜖 1.74 𝜖

Table 2: Summary of ImplCheck subsystems.
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Total Solved 29 40 31 33 30 39 31 34 29 40 32 41

Avg Time/Solved 24.15 18.72 17.81 21.34 17.03 3.33 20.49 28.12 15.22 7.40 28.92 4.30

Median Time/Solved 𝜖 𝜖 𝜖 1.07 2.30 𝜖 1.03 1.06 1.23 1.72 3.06 2.06
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Table 3: Summary of results over general benchmarks.

Benchmark ImplCheck FreqHorn Eldarica GSpacer Golem IC3IA

Total Solved 244 237 237 224 149 206

Avg Time/Solved 11.19 6.71 4.43 2.93 5.28 5.43

Median Time/Solved 3.43 1.93 1.06 𝜖 𝜖 𝜖

RQ3. We compared the performance of ImplCheck on a set of

277 well studied benchmarks taken from previous literature [16ś

19, 25]. This set of benchmarks covers both single loop and multi-

loop programs, with the multi-loop programs having either nested

loops or consecutive loops.

What we aim to show is that the overhead from ImplCheck is

not prohibitively large on more general cases. The results in Table 3

show that ImplCheck is able to verify more benchmarks than the

other tools, and the average overhead for examples solved by both

ImplCheck and FreqHorn is only 4.5 seconds. ImplCheck solves

244 of the 277 and FreqHorn solves 237. This result is encouraging

because it shows that ImplCheck is not pinned to solving one

program type (ie. multi-phase) and adds only a small overhead to

these examples.

9 THREATS TO VALIDITY

Our approach has been built under the consideration of LIA and the

assumption that the underlying theory admits quantifier elimina-

tion forMBP generation. To extend this approach to other numeric

theories we would need to consider how to generateMBPs since

they are crucial to our phase finding algorithm. For Boolean pro-

grams, since our fast-forward algorithm relies on data learning with

integers, we could instead rely on a QE approach to solve those

problems.

ImplCheck is a CHC Solver and takes the output of a verification

front end, like SeaHorn [27]. We rely on the correctness of the

translation from the source code for the input to our algorithm. If the

translation results in multi-phase loops, we believe our algorithm

would have success verifying those cases.

Our analysis of program phases, and the construction of our

DTP , in a worst case scenario could be exponentially expensive.

However, in practice this analysis is completed in less than a second

for both multi-phase examples and the benchmarks in the large set,

includingMBP strengthening.

10 RELATED WORK

Inductive Invariant Synthesis. There are many automated soft-

ware verification approaches that discover proofs in the form of an

inductive invariant [1, 4, 9, 16, 23, 24, 26, 29ś31, 34, 36, 37, 39, 41, 44].

There are many barriers to this problem, mainly due to its unde-

cidability, requiring us to continue to look into this problem and

consistently enlarge the applicability of the tools. While manymeth-

ods have been successfully used for invariant synthesis, the vast

majority do not reliably solve the case of multi-phased loops.

SyGuS [2] is also used for generating safe inductive invariants

with the help of either a user provided grammar [52, 54], or an

automatically generated one [18]. There are several positives to this

approach, and ImplCheck takes advantage of enumeration early in

the execution to find an initial set of candidates. Providing a detailed,

fine-grain, grammar could in theory allow for the verification of

multi-phase programs with previous SyGuS approaches. However,

the grammar would need to include details about the construction

of implications and the need for supporting lemmas.

Multi-phase Loops. Verification of loops with phases requires

disjunctive invariants, and has been the subject of several works [5,

56, 64]. The studies to synthesize disjunctive invariants appears

in several fields, suggesting this is an important problem to solve.

Work on this problem has either relied on explicitly splitting a loop

of consecutive phases [59], needed a user-provided grammar and

interaction [22], or used abstraction techniques which łnaturallyž

include disjunctions [64]. Other work on disjunctive invariant syn-

thesis were approached by Abstract Interpretation [46, 57], Gröbner

basis computation [33], and SyGuS [53]. An approach to loop sum-

marization [61] reasons about program phases using łlazyž QE, but

does not connect them with supporting invariants.

None of these offer as high a degree of flexibility as our approach:

our fast-forwarding technique is effective in finding non-trivial

invariants that are hard for techniques working in rigid domains,

and theymay require supporting invariants to complete verification.

Our approach is also agnostic to the syntactic loop structure of a

program and aims at recovering it from the symbolic encoding (that

e.g., could flatten nested loops).

Data-driven Approaches. Previous work such as [20, 43, 47,

51, 60] use data derived from a given program to aid the inference

of candidate invariants. At the core of these approaches is a guess-

and-check structure, where the guess phase uses data collected from

program traces and the check phase gathers data from counter-

examples. Invariants in the form of both inequality and equality

can be synthesized from traces using techniques from [48, 49]. Ma-

chine learning techniques for verification [25, 63] also use counter-

example-derived data. It is our extension of the data-driven ap-

proach, with our fast-forwarding technique to produce a program

trace at an arbitrary point in a programs execution (typically around

the points of a phase change), that sets our work apart.

11 CONCLUSION

We have presented a novel approach to synthesize safe inductive

invariants by implicit splitting of program phases, and we have

augmented the FreqHorn algorithm to use our new technique,

called ImplCheck. Our approach uses Model Based Projections to

discover phase guards, stored in a decision tree, and it uses a data

learning technique to discover phase lemmas. Key pieces of this

approach are the ability to accurately fast-forward an unrolling to

generate meaningful data and generate these two ingredients. We

have demonstrated the usefulness of our approach by successfully

solving a number of challenging verification tasks.

Motivation for future improvements to our approach include

investigating the benchmarks solved by other tools but not Impl-

Check and improving the efficiency of our algorithm. Support for

arrays and algebraic data types is also a goal for future development.

Artifact Available. A virtual machine is available to reproduce

the reported results [55].
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