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There are many state-of-the-art techniques for loop bound analysis. Most of them target an upper bound
for a given program, and others find a lower bound. Exact bound analysis still remains largely unexplored,
but it offers new applications. To compute an exact bound for a program it is necessary to reason about the
possible values the program’s inputs can take and how they relate to each other. Since inputs can vary on
any given execution of the program, it makes the problem of computing an exact bound challenging. In this
work, we present a new approach to find an exact bound by way of precondition synthesis which iteratively
considers under-approximations of a program under which the bound can be precomputed over initial values
of program variables. For each precondition, our approach synthesizes a function over program variables such
that when the function is applied to the initial values of the program variables, its output is an exact bound
for the program. We reduce the precondition synthesis problem to that of safety verification which lends its
correctness guarantees to the exact bounds we compute. Our technique has been implemented in a tool called
ELBA, and we show that it is effective on a set of challenging single loop benchmarks under Linear Integer
Arithmetic.

CCSConcepts: • Software and its engineering→ Formal software verification; •Theory of computation
→ Logic and verification; Automated reasoning;

Additional Key Words and Phrases: satisfiability modulo theories, automated bound analysis, automated safety
verification, inductive invariant synthesis; functional synthesis

ACM Reference Format:
Daniel Riley and Grigory Fedyukovich. 2025. Exact Loop Bound Analysis. Proc. ACM Program. Lang. 9, PLDI,
Article 220 (June 2025), 24 pages. https://doi.org/10.1145/3729323

1 Introduction
Modern computing landscapes are increasingly dominated by large-scale data centers and cloud
computing infrastructures, where service efficiency is closely linked to energy consumption and
workload distribution. Consequently, the design of next-generation warehouse-scale computing
services presents a significant challenge for the continued advancement and economic viability of
these systems. Design considerations extend beyond hardware and architectural advancements
to encompass the crucial role of dependable software infrastructure. A common paradigm in
warehouse-scale services involves distributing tasks across many systems to leverage parallel
processing. However, a notable source of inefficiency arises from the idle time incurred when
processes are forced to wait for the completion of dependent tasks. Improved estimations of
the computational resources (e.g., cycles, iterations, and execution time) required by distributed
processes can mitigate this wasted resource by enabling more efficient scheduling and resource
allocation [26].

Current approaches to resource analysis focus primarily on determining upper bounds to estimate
the energy, memory, or execution time a program requires. For instance, the symbolic resource

Authors’ Contact Information: Daniel Riley, Florida State University, Tallahassee, USA, driley@cs.fsu.edu; Grigory
Fedyukovich, Florida State University, Tallahassee, USA, grigory@cs.fsu.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/6-ART220
https://doi.org/10.1145/3729323

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 220. Publication date: June 2025.

HTTPS://ORCID.ORG/0000-0002-6390-9778
HTTPS://ORCID.ORG/0000-0003-1727-4043
https://doi.org/10.1145/3729323
https://orcid.org/0000-0002-6390-9778
https://orcid.org/0000-0003-1727-4043
https://orcid.org/0000-0003-1727-4043
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3729323
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/


220:2 Daniel Riley and Grigory Fedyukovich

bound analyses in [20] computes an upper bound from “cost equations” for code fragments of
the program under analysis. The work of [32] generates intervals of input data sizes to determine
where resource usage assertions hold or fail. Other analyses [6, 18, 22, 47] target an upper bound
on a program’s cost, which is most useful in proving termination, rather than in the context of
optimizing energy consumption or memory allocation. In an attempt to find tighter upper bounds,
the approach of [2] computes a bound on a worst case execution of a program.

An exact bound, compared to an upper bound, provides a precise understanding of the execution
cost of a program, in terms of the possible values of its input variables. This precision can be helpful
in the ability to more tightly constrain a program that must run on limited hardware, and it can
provide guarantees on the execution of the program. We are the first to formulate the problem of
Exact Loop Bound Analysis (ELBA) that is concerned with synthesizing a function to compute the
number of iterations of a loop before its execution. Then, we present a first-of-its-kind method for
the ELBA problem. As far as we have seen, no other attempts to discover exact bounds in this way
have been attempted.

Exact bounds can be applied in a similar way as upper bounds. Furthermore, they unlock novel
applications such as relational verification and equivalence checking [8, 46]. For instance, verifying
that two programs produce identical outputs for the same inputs can be significantly enhanced
by computing and utilizing the exact symbolic bounds of both programs [24] to facilitate the
construction and analysis of perfectly aligned lockstep compositions. Moreover, knowing such
bounds can reveal the precise input conditions under which a program demonstrably achieves
optimal performance in terms of execution speed.
Another application for an exact bound of a program is analysis of a program for existential

non-termination, e.g., when searching for a set of initial conditions that allow the loop to enter a
trap and diverge. Those initial states can be difficult to find however. The key property about a
program that would help in identifying these conditions is that the computation of a program’s
exact bound turns negative in some cases. This would enable the determination of the boundary
between a subset of inputs, delineating when the loop will execute a finite number of iterations
or run forever. Knowing potential non-terminating conditions in a program would further aid in
debugging and significantly narrow the scope for potential fixes.
We formulate the ELBA problem as an instance of a precondition synthesis problem which is

concerned with discovering a suitably weak initial condition over a program’s inputs under which
the program never reaches an error state. To represent the total number of remaining loop iterations
(called transitions throughout the paper) at an arbitrary program state, we introduce a fresh variable
called a transition counter that is decremented in the loop body. Our precondition synthesis aims to
find an initialization of the transition counter such that it ultimately reaches a value of zero any
time when the loop finishes. That is, this initialization requires a function to compute the precise
number of transitions from concrete input values only, i.e., before the loop has started. Analysis of
this kind is inspired by techniques to prove termination used in previous works, e.g., [11, 23, 47],
namely to find the preconditions under which the instrumented transition counter’s value is above
zero at the end of the program. In contrast to those preconditions that can be imprecise, our analysis
targets the most conservative precondition.
We present an approach to solving the ELBA problem that proceeds iteratively, by creating

symbolic unrollings of the program with the instrumented transition counter, finding concrete
values of every variable, including the transition counter, learning relationships among variables
based on these data, and synthesizing preconditions under which these relationships hold. Possible
program executions are considered one at a time. To begin the bound search, an unrolling is
encoded into a logic formula that is then sent to a Satisfiability Modulo Theories (SMT) solver.
The solver provides a model of the formula, which is used to gather concrete data of each step in
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Exact Loop Bound Analysis 220:3

the unrolling. The data is then used to discover relationships among program variables, similar
to [16, 36, 37, 40]. We specifically target relationships between the transition counter and the input
variables to synthesize a function over the input variables for computing the exact number of
transitions the program performs under certain preconditions. The ELBA approach is currently
limited to linear integer arithmetic (LIA), due to the data analysis we use, and to single loop
programs.
We seek a precondition that defines the program states for which the bound discovered from

the data applies. Our goal is to make the precondition as weak as possible, encompassing the
broadest set of valid input conditions. We present a novel abduction-based technique to synthesize
a precondition under which the previously computed loop bound is correct. Abduction queries
are posed for a finite number of unrollings of increasing lengths. The result of each query acts
as a bounded precondition. These preconditions are gathered together and generalized to cover a
possibly infinite number of program executions. The algorithm terminates when all the discovered
preconditions describe all possible initial configurations. We validate the synthesized bound under
each precondition using safety verification via the discovery of a safe inductive invariant. The
existence of an inductive invariant guarantees that the value of the counter is zero any time when
the loop finishes.
Our next contribution enables handling a challenging scenario of loops with multiple phases.

In these cases, abduction results in a disjunctive formula, complicating the generalization. This
disjunction arises from the necessity to encode each potential execution of the loop, with each
disjunct representing a unique sequence of iterations and branch selections [40, 44]. The increased
difficulty for precondition synthesis arises from the need to describe not just the input conditions
but also how initial values affect the possible paths through the loop. To address this complexity
and derive a general precondition, we systematically consider all possible combinations of disjuncts
derived from each abductive query. After accumulating the combination of disjuncts, the algorithm
generalizes each set into a candidate precondition that encompasses the execution states that
terminate when the bound holds zero. This exhaustive exploration of combinations allows us to
weaken the precondition and to cover more states applicable to the bound.

Our Exact Loop BoundAnalysis technique has been implemented in the FreqHorn framework [16],
yielding a new tool called ELBA. It leverage FreqHorn’s safety verification application for the
purposes of exact bound synthesis. The underlying SMT solver used by ELBA is Z3 [13].We compare
against the tools Loopus, KoAT, and FreqTerm [6, 18, 47]. Each is a bound analysis tool that finds
upper bounds on program loops. These bounds are often loose upper bounds that do not capture
the number of loop iterations with precision. Our benchmark set is taken from the Termination

Problem Data Base
1, and includes a subset of the benchmarks from both Loopus, FreqTerm, and

FreqHorn. These benchmarks consist of single loop programs, under linear integer arithmetic,
and are deterministic within their loop. Input variables, however, may have non-determinism in
their initial values, and this adds to the challenge of synthesizing an exact bound. Non-determinism
in the input values means that each possible “configuration” of values must be considered. Our
experimental results show that ELBA outperforms these tools by not only finding exact bounds,
but also by producing a result on programs that other analysis tools cannot. ELBA found exact
bounds for 62 out of the 75 benchmark programs, a result that is on the same order as the other
bound analysis tools, Loopus and KoAT, which found 59 and 64 upper bounds on the benchmark
set, respectively. Although ELBA is on average slower to reach its results than Loopus and KoAT,
it comes with the exactness guarantees while the other tools do not.

To sum up, our contributions in this work are:

1https://github.com/TermCOMP/TPDB/tree/master/C_Integer.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 220. Publication date: June 2025.

https://github.com/TermCOMP/TPDB/tree/master/C_Integer


220:4 Daniel Riley and Grigory Fedyukovich

• We have formulated the novel problem of synthesizing a function to compute the number of
loop iterations precisely based on the input variables.
• We propose several use cases for the exact loop bound analysis, where only exact bounds
would be applicable since upper bounds are often imprecise.
• We have developed a first-of-its-kind solution to compute exact loop bounds. Our algorithm
leverages symbolic-reasoning techniques including precondition synthesis, abduction, and
inductive-invariant generation to compute, classify, and prove the correctness of an exact
bound fully automatically.
• Our novel technique computes bounds and their precondition for loopswith non-deterministic
initial values on input variables and branching control flow. This is challenging because it
requires reasoning about all possible initial conditions a program can have.
• We have implemented our technique in a tool called ELBA, and we have evaluated it on a
set of deterministic, single-loop programs under linear integer arithmetic. We show that the
capability of ELBA is superior to other state-of-the-art bound analysis tools.

The paper continues with Sect. 2 which outlines the technique and introduces our motivating
examples. We offer Sect. 3 for a brief background. Sect. 4 introduces our approach in the context of
single loop programs. We introduce the core algorithms and explain them in the context of several
examples. We discuss our experimental evaluation in Sect. 5 and related work in Sect. 6. The work
is summarized in Sect. 7.

2 Motivation and Examples
In this section, we introduce our analysis on a set of examples that gradually become more

challenging and interesting. Whenever applicable, we also give an intuitive comparison to existing
related approaches and introduce new applications. First, we show an example to exhibit the use
of inductive invariants to prove the correctness of the exact bound. Next, the example highlights
ELBA’s ability to reason about each of a program’s possible execution configurations. It is possible
that a loop can be dependent on input variables whose values are not know until runtime. ELBA can
figure out the exact bound (i.e., which variable a loop primarily depends on) for each of the possible
scenarios in these examples. Similarly, ELBA can find exact bounds for programs with branching
control flow. These examples also require analysis over many possible execution scenarios, each of
which must have an exact bound computed.

Inductive invariants to prove correctness. The program in Fig. 1 (a) has one variable with an
unknown initial value (let 𝑦in) and a loop that decrements the variable by one. We present this
small example to give a high level view of how our exact loop bound analysis is performed. At first
glance one could mistakenly think that the loop iterates 𝑦in times, but upon closer examination
it becomes clear that the number of iterations is max (𝑦in, 0). We trust the reader of this paper is
able to prove that this function is indeed correct. One way to do so is illustrated in Fig. 1 (b): the
program is instrumented with a fresh variable tc that is decremented in each iteration and must be
equal to zero at the end of the loop. Then, we can use any program verifier that works by inferring
an inductive invariant to prove that the assertion holds. In our case, invariant tc = max(y, 0)
ensures that when the loop has terminated (and thus condition y > 0 no longer holds), tc evaluates
to zero.

Analysis over input relationships. The program in Fig. 1 (c) (which is already shown with the
counter tc) has two decrementing variables and a conjunctive loop guard. In this example, we show
that finding an exact bound, even on a small program, is more challenging than it might seem in
Sect 4.2. An approach based on static analysis can infer an upper bound on the number of iterations
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int y = nondet ();

while (y > 0){

y--;

}

(a)

int y = nondet ();

int tc = max(y, 0);

while (y > 0){

y--;

tc - -;

}

assert(tc == 0);

(b)

int y = nondet ();

int z = nondet ();

int tc = f(y, z);

while (y > 0 && z > 0){

y--;

z--;

tc - -;

}

assert(tc == 0);

(c)

Fig. 1. Examples to begin with: (a) straightforward loop with a single decrementing variable, (b) same one

instrumented with a fresh counter tc, (c) slightly more interesting loop with two original variables and tc.

int i = nondet ();

int tc = f(i);

while (i == 7 ||

i == 5040){

i = i!;

tc - -;

}

assert(tc == 0);

(a)

int x = nondet ();

int n = nondet ();

int tc = f(x, n);

while (x != n){

x--;

tc - -;

}

assert(tc == 0);

(b)

int x = 0;

int y = 0;

int m = nondet ();

int n = nondet ();

int tc = f(x, y, m, n);

while (x < n){

if(y < m) y++;

else x++;

tc - -;

}

assert(tc == 0);

(c)

Fig. 2. (a) A loop that iterates only one or two times but must reason about a factorial, (b) a non-terminating

example, (c) a loop with two phases.

(and thus an initial value of tc) to be max(y, z, 0). Upper bounds are useful when we want to
prove termination, and thus an upper bound like 2 × max(y, z, 0) + 1000 would work too2,
albeit it is less precise. The question we address in this paper is whether we can go further and
infer themost precise (i.e., exact) bound, which enables an a priori calculation of the number of loop
iterations under each concrete input. It turns out that such a bound for this example, expressed by
function f(y, z) is if (y > 0 and z > 0) then min(y, z) else 0. We prove it by finding an
inductive invariant using ELBA’s internal verification algorithm.

Applications. The advantage of knowing this exact function is that we can apply it to any concrete
input and compute a concrete number of iterations without executing the program. For instance, if
initially y = 5 and z = 9, then the loop iterates five times – we would not be able to infer this
knowing only an upper bound. Another interesting problem that our analysis can be applied to is
inferring conditional equivalence of execution costs for two programs: what is the condition under
which two programs iterate exactly the same number of times? For the programs in Fig. 1 (b-c), we
can infer such a condition by 1) equating the exact bounds, and 2) abducing the produced equality.

2Here and later we assume algebraic integers.
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Thus, the problem is to find the weakest𝜓 such that the following implication is valid:

𝜓 (y,z) =⇒ max(y, 0) =

if (y > 0 and z > 0) then min(y, z)

else 0

The solution to the problem is𝜓 = z ≥ y that can be obtained by an abduction solver, i.e., any SMT
solver that supports quantifier elimination in linear integer arithmetic. Intuitively, this solution
can be interpreted as if the program in Fig. 1 (c) was given z greater or equal than y, then its loop
would iterate exactly the same number of times as the loop in the program in Fig. 1 (b). Again, we
are able to infer this without conducting any specialized relational verification [24], but rather by
operating on the inferred functions.

Discrete iterations. The program in Fig. 2 (a) that has a complex nonlinear computation in the
loop body (for simplicity, we still count it as a single transition, but this of course can be made
more precise): if (i == 7) then 2 else if (i == 5040) then 1 else 0. The challenge
of finding this bound is attributed to non-existence of a simple linear relation between i and tc.
However, our analysis can figure out that the loop may never iterate three times or longer, and the
solution captures the boundary between the other possible two initial states precisely. At a high
level, it is done by checking which conditions the loop is entered. The loop guard allows only two
cases where the loop executes, and ELBA can determine precise conditions for them. With this
information ELBA can reason about the number of iterations the loop performs by looking at the
models produced by the SMT solver from a loop unrolling. The unrolling includes the transition
counter tc and the analysis concludes that the loop can only iterate one or two times, and it matches
those cases together with the preconditions 𝑖 = 5040 and 𝑖 = 7 respectively.

Observing non-termination. It could be the case that a loop may not terminate under certain
initial values of its input variables. Program in Fig. 2 (b) is one such example. If the initial values of
x and n are such that x > n, then the program enters the loop and eventually terminates. In the
case when x and n are initially equal, the loop is not executed. However, the case when x < n is
important to consider. In this case, the program enters the loop, but it does not terminate since x
moves further away from n. What is interesting here is that our analysis can find the terminating
configuration, and the bound, for the loop. While non-termination is not explicitly checked, a
function can be checked for the scenario under which it produces a negative value. A negative
value for the transition counter is clearly nonsense, but it can be interpreted as a configuration
of the program’s initial values that leads to the non-termination of the loop. In the case of this
program, the exact bound is: if (x > n) then (x - n) else if (x = n) then 0 else -1.
The −1 captures the case when the loop does not terminate.

Handling branching control flow. The loop in Fig. 2 (c) adds a level of complexity to the analysis
for an exact bound. In this loop, there are two branches, and which branches are visited depends
on the value of m. If the initial value of variable y is less than the initial value of m, the loop enters
the first branch and iterates until y equals m. When that condition is fulfilled, the second branch
executes until x = n.
Another execution of the program could have initial values such that the first branch is not

visited at all. In this case, the loop only visits the second branch and terminates when x = n. There
is a third case to consider in which the value of n is less than or equals zero initially. In this case,
the loop does not iterate at all. The challenge is figuring out exactly how many iterations the loop
can do in the three cases described above. ELBA considers each case one at a time and finds an
exact bound for each possible execution of the program separately.
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In the case where the initial values of the input variables are such that n is greater than x but y
is greater than or equal to m then only the second branch is visited. Then ELBA reasons that under
this condition the loop must iterate n times, and it also finds the precondition described above.
When the input is such that both branches are visited then ELBA finds that the exact bound is m + n.
Then the exact bound for this program, after the final case is examined, looks like:

if (n > x ∧ m > y) then m + n

else if (n > x ∧ m ≤ y) then n else 0

3 Background
The Satisfiability Modulo Theories (SMT) problem is concerned with determining the existence
of a satisfying assignment to the variables in a given formula 𝜑 . The assignment is referred to
as a model, and we write M |= 𝜑 to state that 𝜑 is satisfiable (i.e., model M exists). If every
model of 𝜑 also satisfies a formula 𝜓 then 𝜑 is logically stronger than 𝜓 (written 𝜑 =⇒ 𝜓 ). An
unsatisfiable formula 𝜑 is denoted 𝜑 =⇒ ⊥. By 𝜑(𝑥 ) we denote a formula over free variables 𝑥 . In
term/formula 𝜑 , a replacement of 𝑥 with 𝑦, we write 𝜑[𝑦/𝑥]. Similarly, for a set of variables 𝑋 and
a mapping M , 𝜑[M /𝑋 ] denotes the replacement of 𝑥1, 𝑥2, . . . ∈ 𝑋 respectively by M (𝑥1), M (𝑥2),
etc. Throughout the paper, by Λ we denote a set of all anonymous functions, e.g., 𝜆𝑥 . 𝑥 + 1 that
returns an incremented argument.

We represent programs as transition systems and may refer to a program with either term.

Definition 3.1. A transition system is a tuple ⟨V , init, tr⟩.V is a sequence of state variables, init ∈ Λ
is a one-state predicate that represents a set of initial states, and tr ∈ Λ is a two-state predicate that
represents a transition relation forV andV ′, i.e., state variables and next-state variables respectively.

Example 3.2. The transition system for the program in Fig. 2 (c), without the counter, is as follows.

V

def
= {𝑥,𝑦,𝑚, 𝑛} init

def
= 𝑥 = 0 ∧ 𝑦 = 0 tr

def
= 𝑥 < 𝑛 ∧ 𝑥 ′ = ite(𝑦 < 𝑚, 𝑥, 𝑥 + 1) ∧
𝑦 ′ = ite(𝑦 < 𝑚,𝑦 + 1, 𝑦) ∧ 𝑛′ = 𝑛 ∧𝑚′ =𝑚

Definition 3.3. Given a transition system ⟨V , init, tr⟩ and a set of error states bad, a safe inductive
invariant is a formula inv over free variables 𝑉 that meets the following conditions (initiation,
consecution, and safety, respectively):

init (V ) =⇒ inv(V ) (1)
inv(V ) ∧ tr (V ,V ′) =⇒ inv(V ′) (2)
inv(V ) ∧ bad (V ) =⇒ ⊥ (3)

The safety verification problem for a given transition system and a set of error states is concerned
with determining an existence of interpretation of inv that makes the implications in Def. 3.3 valid.
In other words, inv represents a program property that covers every initial state (implication 1),
is closed under the transition relation (implication 2), and does not cover any of the bad states
(implication 3). We often refer to safe inductive invariants as simply invariants throughout the
paper.

The precondition synthesis problem for some 𝑇 = ⟨V , init, tr⟩ and some formula bad is concerned
with finding a formula p such that the safety verification problem ⟨V , init ∧ p, tr, bad⟩ has a solu-
tion. Because every precondition synthesis problem can be trivially solved by letting p be ⊥, we
naturally target an adequately weak (but it may not be the weakest) p. With these restrictions
in the precondition a safe inductive invariant can be found using standard methods to invariant
synthesis; however it is much more challenging to find a good precondition itself and to prove it is
the weakest possible.
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First possible execution
x y m n tc

0 0 1 1 2
0 1 1 1 1
1 1 1 1 0

Second possible execution
x y m n tc

0 0 0 2 2
1 0 0 2 1
2 0 0 2 0

Fig. 3. An example of two data matrices that correspond to two different possible executions of the program

in Fig 2 (c).

Example 3.4. An interpretation of p must restrict the initial value of the variables to make the
program from Fig. 2 (c) safe.

p(𝑥,𝑦,𝑚, 𝑛, tc) ∧ 𝑥 = 0 ∧ 𝑦 = 0 =⇒ inv(𝑥,𝑦,𝑚, 𝑛, tc)
inv(𝑥,𝑦,𝑚, 𝑛, tc) ∧ (𝑥 < 𝑛) ∧ 𝑥 ′ = ite(𝑦 < 𝑚, 𝑥, 𝑥 + 1)∧

𝑚′ =𝑚 ∧ 𝑛′ = 𝑛 ∧ 𝑦 ′ = ite(𝑦 < 𝑚,𝑦 + 1, 𝑦) ∧ tc′ = tc − 1 =⇒ inv(𝑥 ′, 𝑦 ′,𝑚′, 𝑛′, tc′)
inv(𝑥,𝑦,𝑚, 𝑛, tc) ∧ (𝑥 ≥ 𝑛) ∧ ¬(tc = 0) =⇒ ⊥ (4)

Example 3.4 gives some motivation to find a precondition under which a property would hold
(and an invariant would exist). Specifically, there must be a precondition that restricts x, y, and
z so that it is not possible to violate the safety specification. A possible such precondition has x
and y equal when x and either y or z is less than zero, or when all three are non-negative and y
is less than z. With these restrictions in the precondition a safe inductive invariant can be found
using standard methods to invariant synthesis; however it is much more challenging to find a good
precondition itself and to prove it is the weakest possible. A valid interpretation of p restricts the
initial values of x and y to both be greater than zero.
We use symbolic data learning to discover relationships among program variablesV . It gathers

traces of data as finite unrollings of the transition system as shown below.

Definition 3.5. An unrolling of length𝑚 of a transition system ⟨V , init, tr⟩ is a conjunction:

unrl(V , . . . ,V (𝑚)) def= init (V ) ∧ tr (V ,V ′) ∧ . . . ∧ tr (V (𝑚−1),V (𝑚))

over multiple copies of variablesV , i.e., for all 𝑖, 𝑗, 𝑘, 𝑛, if 𝑖 ≠ 𝑗 and 𝑘 ≠ 𝑛, thenV (𝑖) [𝑘] ≠V ( 𝑗) [𝑛].

A model of an unrolling (if determined by an SMT solver) makes up the rows of a data matrix,
which is used to infer relationships between the program variables.

Definition 3.6. For a given program, a given unrolling, and a given model M |= unrl(V , . . . ,V (𝑚)),
a data matrix is an 𝑚 × 𝑛 matrix denoted DM which is composed of 𝑚 rows representing the
transitions of a program and of 𝑛 columns representing the value of a variableV [ 𝑗]. An element
DM [𝑖, 𝑗] contains the value in the 𝑖th transition of the 𝑗 th variable. That is, DM [𝑖, 𝑗] def= M (V (𝑖) [ 𝑗]).

Example 3.7. Recall the program in Fig. 2 (c). If the value of y is less than the value of m, then the
first branch is taken until y sufficiently increments. Then x increments until the loop terminates. In
another case, if y is greater than or equal to m, then only the second branch is visited. These two
cases require two different data matrices shown in Fig. 3 to allow for the proper reasoning about
how the variables are related.

There are many algorithms to infer formulas overV from a data matrix. One such algorithm
takes two rows 𝑘 and 𝑙 of a data matrix DM and two variablesV [𝑖] andV [ 𝑗] on a canonical equation
of a line [15]. This pairing yields an equality of the form (DM [𝑙, 𝑗] −DM [𝑘, 𝑗]) · (V [𝑖] −DM [𝑘, 𝑖]) =
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(DM [𝑙, 𝑖]−DM [𝑘, 𝑖]) ·(V [ 𝑗]−DM [𝑘, 𝑗]). Performing addition/subtraction of two equalities produced
this way for anyV [𝑖],V [ 𝑗],𝑘 , and 𝑙 leads to the discovery of new formulas relatingmultiple variables.

Example 3.8. Consider the data matrix in Fig. 3 for the second possible execution. Take the
variables x, n, and tc. The equality (1 − 0) · (n − 2) = (2 − 2) · (x − 1) which simplifies to n = 2
comes from relating the top two rows in the matrix and x with n. Another equality comes from
relating tc and x, namely (1− 2) · (x− 2) = (1− 0) · (tc− 0) which simplifies to tc = 2− x. Taking
the difference of these two equalities yields the equality, tc = n − x.

Finally, we rely on the concept of logic abduction that allows us to infer preconditions. The goal
of abduction is to find the weakest formula𝜓 over variables𝑊 that implies some 𝜙 . This is done by
universally quantifying the variables in 𝜙 except those in𝑊 . The resultant formula is a precondition
that covers the states constrained by 𝜙 and is non-trivial. We write𝜓 ← abduce(W , 𝜙) to learn
the formula𝜓 (𝑊 ), such that:

𝜓 ← abduce(W , 𝜙) def= QE(∀Vars(𝜙) \𝑊 .𝜓 =⇒ 𝜙)

4 ELBA Solver for Transition Systems
The problem of Exact Loop Bound Analysis (ELBA) is technically an instance of a precondition
synthesis problem, defined in Sect. 3, and an instance of a second-order functional synthesis
problem.

4.1 Problem Statement
We aim to find a suitable predicate that strengthens initial states for which the given safety property
holds. In the context of loop bound analysis, a fresh variable is needed to compute the number
of transitions, which we call an transition counter (tc), that decrements in each loop iteration.
Intuitively, we wish to synthesize a function 𝑓 to precompute the value of tc over the initial values
of program variables, such that tc holds zero after the loop has terminated.

The desired function 𝑓 , when found, can be interpreted as a “transition budget” known a priori.
The assertion indicates that this budget is fully exhausted at the end of the loop. Many termination
analysis approaches, e.g., [11, 18, 47], operate by adding a fresh counter, and we extend its use in
this work. Compared to the problem of precondition synthesis, instead of finding a precondition
of arbitrary shape, our preconditions are restricted to an equality tc = 𝑓 (V ), where an integer
function 𝑓 (V ) places some restriction on tc in terms of the variablesV . Note that since tc ∉V ,
this constraint is not trivially vacuous. Formally, the instrumentation of ⟨V , init, tr⟩ with tc and
with the equality in the desired precondition needs to meet the following properties for some safe
inductive invariant inv:

Definition 4.1 (ELBA). Given a transition system 𝑇 = ⟨V , init, tr⟩, by 𝑇 𝑓

tc = ⟨V ∪ {tc}, init ∧ tc =

𝑓 (V ), tr ∧ tc′ = tc − 1⟩ we denote an instrumented transition system with a fresh integer variable
tc ∉V , and function 𝑓 ∈ Λ. Given 𝑇 and a function 𝑔 ∈ Λ, the ELBA problem is concerned with
finding one particular 𝑓 such that 𝑇 𝑓

tc is safe w.r.t. ¬(∃V ′ . tr) (V ) ∧ ¬(tc = 𝑔(V )).

Intuitively, in order to define a set of error states, as in Def. 3.3, we exploit a loop guard computed
by eliminating the next-state variables from the transition relation in Def. 4.1 (i.e., ¬(∃V ′ . tr)).
Function𝑔 from the definition enables us to parametrize the problemwith various leftover transition
budget, and for single-loop programs, it makes sense to let 𝑔 def

= 𝜆V . 0. Thus, throughout this section,
we let the bad predicate to be (¬∃V ′ . tr) (V ) ∧¬(tc = 0). In other words, for some𝑇 we are looking

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 220. Publication date: June 2025.



220:10 Daniel Riley and Grigory Fedyukovich

for some 𝑓 and inv, such that the following three implications are valid:

init (V ) ∧ tc = 𝑓 (V ) =⇒ inv(V , tc) (5)
inv(V , tc) ∧ tr (V ,V ′) ∧ tc′ = tc − 1 =⇒ inv(V ′, tc′) (6)

inv(V , tc) ∧ (¬∃V ′ . tr) (V ) ∧ ¬(tc = 0) =⇒ ⊥ (7)

Strictly speaking, this is the problem of functional synthesis for a precondition in second-order

logic:
∃𝑓 . ∃inv .∀V ,V ′, tc, tc′ . (5) ∧ (6) ∧ (7).

Although the user might be interested only in an interpretation of 𝑓 and not in the actual
invariant; the latter is useful as a proof that the former is correct. In our approach, we synthesize
both a bound and its proof.

4.2 Solver
Defined in the previous subsection, the ELBA problem can be approached by analyzing each of
a program’s possible initial conditions. In this section, we illustrate the main ingredients of our
approach: the iterative synthesis of an exact bound, using program unrollings, and the synthesis
of its precondition by bounded abduction. That is, for a given transition system 𝑇 , we consider a
subproblem to find a finite set of disjoint formulas p1, . . . , p𝑛 , such that p1 ∨ . . . ∨ p𝑛 = ⊤, for each
𝑖 ≠ 𝑗 , p𝑖 ∧ p𝑗 = ⊥, and each p𝑖 defines a restriction on the initial states init that allows us to analyze
a set of under-approximations.

Definition 4.2. Given a transition system 𝑇 = ⟨V , init, tr⟩ and a formula p over free variablesV ,
we say that a transition system 𝑇p = ⟨V , init ∧ p, tr⟩ is an under-approximation of 𝑇 .

Some under-approximations (incl. the trivial for p def
= ⊥) may make the transition system contain

no transitions. We say that 𝑇 = ⟨V , init, tr⟩ is empty if ∀V ′ . init (V ) =⇒ ¬tr (V ,V ′). A loop bound
for an empty transition system is obviously zero since the loop never executes.

Lemma 4.3. If T is empty then 𝑓
def
= 𝜆V . 0 is a solution for the ELBA problem for 𝑇

𝑓

tc.

Our ELBA solver is defined in Alg. 1. It works by enumerating under-approximations and finding
bounds for each one separately. The key construction for data gathering is loop unrolling, recall
Def. 3.5. Given a satisfiable unrolling, values for each variable in each loop iteration in an unrolling
are taken from a model generated by an SMT solver. Thus, there is no need to actually run the
program on different datasets, and the entire computation can be done at compile time. The models
are then analyzed to synthesize a function over the program variables.

The ELBA solver begins by searching for a satisfiable unrolling3 and then synthesizes a function
𝑓 such that the equality tc = 𝑓 (V ) holds for each iteration (modulo indexed variables forV ) of that
unrolling. Next, it assumes that the discovered 𝑓 is a possible bound for some under-approximation
and tries to describe it (by finding its precondition), but as weak as possible. The algorithm poses
an abduction query to find this precondition under which the function from data is evaluated to
zero when computed with the variables’ initial values. When a bound is synthesized, the associated
precondition is blocked from the next search, so that redundant steps are avoided. Again, the bound
search continues until the space covered by the initial states of the program are also covered by the
preconditions. The core algorithm can be described in four steps:
3In practice, the algorithm could take considerable time to find a satisfiable unrolling when it depends on large concrete
numbers (e.g., for a loop with a counter explicitly bounded by 1000). As an optimization, our implementation preprocesses
the program by soundly abstracting large constants away. When a bound is synthesized, the constants are added back to
the solution which is correct by construction.
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Algorithm 1: ELBA Solver(𝑇,𝑔)
Input: 𝑇 = ⟨V , init, tr⟩: program and 𝑔: leftover budget
Output: ite(𝜓1, 𝑓1, ite(𝜓2, 𝑓2, ite(. . .))) is a solution for ELBA-problem

1 let B be ∅;
2 while ⊤ do
3 let M be ∅; 𝐶 be ∅, 𝑝 be

∧
⟨𝜓,_⟩∈B

¬𝜓 ; and 𝜙 be init ∧ 𝑝 ∧ tr ;

4 if ¬isSat(𝜙) then
5 B← B ∪ {⟨𝑝, 0⟩};
6 return ite(𝜓1, 𝑓1, ite(𝜓2, 𝑓2, ite(. . .))) where all ⟨𝜓𝑖 , 𝑓𝑖⟩ ∈ B;
7 𝜙 ← 𝑝;
8 for 𝑐 ∈ [0, some threshold 𝑘] do
9 𝜙 ← 𝜙 ∧ tr (V (𝑐) ,V (𝑐+1) ) ∧ tc(𝑐+1) = tc(𝑐) − 1;

10 let 𝜙 ′ be 𝜙 ∧ ¬(∃V ′ . tr) (V (𝑐+1) ) ∧ tc(𝑐+1) = 𝑔(V (𝑐+1) ));
11 if isSat(𝜙 ′) then
12 M ← getModel(𝜙 ′);
13 C ← C ∪ {c};
14 if * then break;
15 if M = ∅ then 𝐹 ← {𝜆V . − 1};
16 else 𝐹 ← invFromData(V ∪ {tc}, createDM(V ∪ {tc},M , 𝜙));
17 for 𝑓 ∈ 𝐹 do
18 𝜓 ← getPre(⟨V , init ∧ ∧

⟨𝜓,_⟩∈B
¬𝜓, tr⟩, tc, 𝑓 , 𝑔,𝐶);

19 if 𝜓 ≠ false then
20 B← B ∪ {⟨𝜓, 𝑓 ⟩};
21 break;

step 1 [lines 3 - 6] Solve the formula 𝜙 def
= init ∧ ∧

⟨𝜓,_⟩∈B
¬𝜓 ∧ tr : if unsat, then there are no transitions

left. Then the transition system ⟨V , init ∧ ∧
⟨𝜓,_⟩∈B

¬𝜓, tr⟩ is empty, and thus its bound is zero.

step 2 [lines 8 - 14] Get an unrolling and its model of the instrumented transition system with tc
that represents a viable execution of the transition system under the constraints from the
previous step. Because there could be multiple suitable unrollings (each of which yields a
distinct data matrix), our algorithm picks one nondeterministically (line 14).

step 3 [lines 15-16] Get a data matrix from the model and find a bounded data invariant of form
tc = 𝑓 (V ) (see Def. 4.4 below). If there is no model, the algorithm guesses a negative bound.

step 4 [lines 17 - 20] Find a suitable precondition under which the discovered function 𝑓 gives
an exact bound. This is the most computationally heavy step where the actual synthesis is
performed.

Definition 4.4. Given a data matrix DM with𝑚 rows and 𝑛 columns generated for program over
variablesV , a data invariant is a formula 𝛿 (V ) such that for each 𝑖 ∈ [1,𝑚], 𝛿 (DM [𝑖, 1], . . . ,DM [𝑖, 𝑛])
evaluates to true (we say that it holds at each row of DM , for simplicity).

In step 3, the data invariant is synthesized by analyzing the bounded unrolling, guided by all
previously derived preconditions to ensure exploration of novel executions of the program. As a
convention, the transition counter (tc) values are stored in the DM [𝑖, 𝑛] entries of the data matrix
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DM . We utilize the function invFromData(V ∪ {tc},DM) to derive a set of data invariants of the
form tc = 𝑓 (V ) from DM over the set of program variablesV and tc. As detailed in the penultimate
paragraph of Section 3, and which we emphasize here, the technique used by InvFromData is based
on examining variable pairs within the data matrix. By performing operations such as addition or
subtraction on these pairs, we can derive new formulas that reveal relationships between variables.
This specific approach effectively “connects” variables onto a canonical equation of a line [15],
enabling the discovery of relationships that might otherwise be challenging to synthesize. Recall
Example 3.8 in Sect. 3 and the found equality tc = n − x. During the enumeration, many other
equalities are found, but it can be the case that some of these equalities do not capture the behavior
of the loop correctly. For this reason, all of the equalities that are produced by this technique are
checked against all of the rows in the data matrix from which they were derived. The equality
tc = n − x holds true for every row of the matrix, so it is kept to be checked as a bound. It is
worth noting that while this “connecting” method is a focus of our technique for learning equalities
from the data matrix, InvFromData could also utilize other algorithms, such as Gauss-Jordan
elimination, to learn a relationship between tc andV . In practice, however, we find that Gauss-
Jordan elimination was not as effective at finding sufficiently descriptive equalities for the purpose
of finding an exact bound.

Example 4.5. Formula tc = n − x + m − y is a data invariant for the matrix from Fig. 3 (left).
Formula tc = n − x is a data invariant for the matrix from Fig. 3 (right).

Next we give an example of the entire run of the algorithm that highlights the iterative nature of
generating bounds and their preconditions.

Example 4.6. Recall the program in Fig. 1 (c). This example involves exploring two preconditions
since either one of 𝑦 or 𝑧 can determine the loop’s termination. For the first precondition, the
algorithm finds a satisfiable transition from the initial state, i.e., a model of formula 𝑦 > 0 ∧ 𝑧 >

0 ∧ 𝑦 ′ = 𝑦 − 1 ∧ 𝑧 ′ = 𝑧 − 1. The algorithm nondeterministically picks an unrolling of length two of
the instrumented transition system and finds its model, e.g., 𝑦 ↦→ 2, 𝑧 ↦→ 3, 𝑦 ′ ↦→ 1, 𝑧 ′ ↦→ 2 which is
further used as the first row in the data matrix:

y z tc

2 3 2
1 2 1
0 1 0

The discovered data invariants tc = y and tc = z − 1 populate the set 𝐹 with functions 𝜆𝑦 .𝑦 and
𝜆𝑦 .𝑦 − 1, respectively. Alg. 1 picks 𝜆𝑦 .𝑦 (as a simpler one, syntactically) and proceeds to call Alg. 2
(getPre). For now, we leave out the details of getPre and take it at face value that it synthesizes
the precondition𝜓 def

= 𝜆𝑧,𝑦 . 𝑧 ≥ 𝑦 ∧ 𝑦 ≥ 0. This precondition is connected to the bound: if (z ≥
y ∧ y ≥ 0) then y else Δ. Here, Δ is a placeholder for the missing part of the exact bound yet
to be discovered.
Alg. 1 proceeds through a second iteration. The found precondition is negated and conjoined

with tr , thus giving us formula ¬(𝑧 ≥ 𝑦 ∧ 𝑦 ≥ 0) ∧ 𝑦 > 0 ∧ 𝑧 > 0 ∧ 𝑦 ′ = 𝑦 − 1 ∧ 𝑧 ′ = 𝑧 − 1. A new
model is produced, (𝑦 ↦→ 3, 𝑧 ↦→ 2, 𝑦 ′ ↦→ 2, 𝑧 ′ ↦→ 1), and different behavior is observed in the data
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matrix.
y z tc

3 2 2
2 1 1
1 0 0

From the data matrix, the function 𝑓
def
= 𝑧 is found. getPre is visited again with the new function 𝑓

and it finds a precondition of𝜓 def
= 𝑦 < 𝑧 ∧ 𝑧 ≥ 0. This precondition and function are added to the

bound: if (z ≥ y ∧ y ≥ 0) then y else if (y < z ∧ z ≥ 0) then z else Δ.
A third iteration of Alg. 1 begins, but this time the satisfiability check fails and the bound for

zero itererations is added. The exact bound has now been found: if (z ≥ y ∧ y ≥ 0) then y
else if (y < z ∧ z ≥ 0) then z else 0.

4.3 Precondition Inference Via Bounded Abduction and Generalization
The tricky part of the algorithm is in step 4 where a precondition needs to be synthesized and
proven for potentially infinite subset of program executions. When this subset is finite, we can
solve it using abduction (i.e., quantifier elimination), but otherwise, we cannot formulate it as an
abduction query in first order logic. It is equivalent to solving a precondition inference problem:
find 𝜓 such that the under-approximation ⟨V ∪ {tc}, init ∧ tc = 𝑓 (V ) ∧ 𝜓, tr ∧ tc′ = tc − 1⟩
is safe w.r.t. ¬(∃V ′ . tr) ∧ ¬(tc = 0). We present a new technique called bounded abduction to
create preconditions for queries originating from (bounded) unrollings using abduction, and then
generalizing them to preconditions for a possibly unbounded number of loop behaviors.
step 4.1 [line 3-4] Prepare an unrolling (of some length 𝑐) and check its satisfiability.
step 4.2 [line 5] Solve the bounded abduction query for 𝑐 steps taken from prevously successful

unrollings and get some𝜓 .
step 4.3 [line 6] Split the disjunctive result from abduction into each disjunct and store them in a

list of sets.
step 4.4 [line 8] Prepare a list of all possible combinations from the results from step 4.3 and store

them in 𝐷 .
step 4.5 [lines 11] For each combination made in step 4.4, infer (Alg. 3) a set of constraints that

together make up a possible precondition 𝜑 .
step 4.6 [lines 13] Check safety of ⟨V ∪ {tc}, init ∧ tc = 𝑓 (V ) ∧ 𝜑, tr ∧ tc′ = tc − 1⟩ w.r.t.

¬(∃V ′ . tr) ∧ ¬(tc = 0).
step 4.7 [line 13] Try to weaken 𝜑 (

∧
𝑝∈𝑃

𝑝) from step 4.6 while maintaining the safety of the system.

The result is the safe precondition returned to Alg. 1.
step 4.8 [line 14-16] Check that the result 𝛽 is weaker than the previous result 𝛼 (which is initially

false) and update 𝛼 accordingly.
We first discuss a simple version of this algorithm for the case when the results of abduction are

disjunction-free. The discussion in Sect. 4.4 covers a more complicated case which allows us to
extend the algorithm to programs with branching control flow.

Example 4.7. Again recall the program in Fig. 1 (c). In Ex. 4.6 we showed how satisfiable unrollings
are used to create a data matrix and produce a function for the bound. We glossed over the steps
taken in Alg. 2 to produce the precondition that covers the bound. Here we illustrate those steps in
the context of the same program.

After the function 𝑓
def
= 𝜆𝑦 .𝑦 is found from data, the algorithm continues to the abduction phase.

For demonstration reasons, we assume set 𝐶 = {1, 2}. Bounded abduction begins with 𝑐 = 1, with
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Algorithm 2: getPre(𝑇, tc, 𝑓 , 𝑔)
Input: 𝑇 = ⟨V , init, tr⟩: program, tc: counter, 𝑓 : initial budget, 𝑔: leftover budget, 𝐶: Set of

satisfiable unrolling lengths
Output: solution of the precondition synthesis problem

⟨V ∪ {tc}, init ∧ tc = 𝑓 (V ), tr ∧ tc′ = tc − 1⟩,¬∃V ′ . tr ∧ tc ≠ 𝑔(V )
1 let 𝜙 be init; and A be 𝑛𝑖𝑙 ;
2 for 𝑐 ∈ 𝐶 do
3 𝜙 ← init ∧ ∧

𝑖∈[1,𝑐 ]
tr (V (𝑖) ,V (𝑖+1) );

4 if ¬isSat(𝜙) then continue;
5 𝜓 ← abduce(V , 𝜙 ∧ ¬(∃V ′ . tr) ∧ 𝑓 (V (𝑐+1) ) = 𝑔(V (𝑐+1) );
6 let𝜓 be in DNF, i.e.,𝜓 = 𝜓1 ∨𝜓2 ∨ . . . ∨𝜓𝑛 ;
7 A← A :: {𝜓𝑖 | 𝑖 ∈ [1, 𝑛]};
8 let D be Π𝑁

𝑖=1A𝑖 where 𝑁 is the length of A;
9 let 𝛼 be false;

10 for d ∈ D do
11 P ← inferFromProjections(d);
12 if ¬isSafe(⟨V , init ∧ ∧

𝛾 ∈P
𝛾, tr⟩, 𝑓 (V ) = 𝑔(V )) then continue;

13 𝛽 ← weakenAndCheck(⟨V ∪ {tc}, init ∧ tc = 𝑓 (V ), tr ∧ tc′ =
tc − 1⟩,¬∃V ′ . tr ∧ tc ≠ 𝑔(V ), P);

14 if 𝛼 =⇒ 𝛽 then 𝛼 ← 𝛽 ;
15 else if 𝛽 =⇒ 𝛼 then continue;
16 else 𝛼 ← 𝛼 ∨ 𝛽 ;
17 return 𝛼 ;

the query constructed from an unrolling of the instrumented transition system conjoined with the
termination condition. That is, we wish to find the weakest𝜓1 (𝑦, 𝑧) such that:

𝜓1 (𝑦, 𝑧) =⇒ ∃𝑦 ′, 𝑧 ′ . 𝑦 > 0 ∧ 𝑧 > 0 ∧ 𝑦 ′ = 𝑦 − 1 ∧ 𝑧 ′ = 𝑧 − 1 ∧ ¬(𝑦 ′ > 0 ∧ 𝑧 ′ > 0) ∧ 𝑦 ′ = 0

This yields𝜓1
def
= 𝜆𝑧,𝑦 . 𝑧 ≥ 1 ∧ 1 = 𝑦.

For 𝑐 = 2, we wish to find the weakest𝜓2 (𝑦, 𝑧) such that:

𝜓2 (𝑦, 𝑧) =⇒ ∃𝑦 ′, 𝑧 ′, 𝑦 ′′, 𝑧 ′′ . 𝑦 > 0 ∧ 𝑧 > 0 ∧ 𝑦 ′ = 𝑦 − 1 ∧ 𝑧 ′ = 𝑧 − 1∧
𝑦 ′ > 0 ∧ 𝑧 ′ > 0 ∧ 𝑦 ′′ = 𝑦 ′ − 1 ∧ 𝑧 ′′ = 𝑧 ′ − 1 ∧ ¬(𝑦 ′′ > 0 ∧ 𝑧 ′′ > 0) ∧ 𝑦 ′′ = 0

This yields𝜓2
def
= 𝜆𝑧,𝑦 . 𝑧 ≥ 2 ∧ 2 = 𝑦.

Our algorithm inferFromProjections implements a simple heuristic to generalize from se-
quences (i.e., lists) of conjunctive formulas (projections𝜓1 and𝜓2), i.e.,

𝑧 ≥ 1 ∧ 1 = 𝑦 and
𝑧 ≥ 2 ∧ 2 = 𝑦

The order of elements in the list is crucial, and we know that the first (resp. second) element
represents a precondition for one (resp. two) iteration(s) of the loop under a certain bound. First, it
breaks the equality in 1 = 𝑦 into {1 ≤ 𝑦, 1 ≥ 𝑦} and adds them to 𝑃 . Second, it generates new (in a
sense, redundant) formulas by replacing 1 by 𝑦 in the formula 𝑧 ≥ 1 (line 5) and adds it to 𝑃 . Then,
it iteratively removes elements of 𝑃 if they are not implied by the second formula. Clearly, because
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Algorithm 3: inferFromProjections (A)
Input: A: list of 𝑁 results from bounded abduction (with increasing length of unrollings).
Output: P : A set of the weakest constraints from A that make up a precondition.

1 Let P be ∅;
2 for each conjunct 𝜙 in A[0] do
3 if 𝜙 has form a = b then
4 P ← P ∪ {a ≤ b, a ≥ b};
5 𝐴[0] ← 𝐴[0] ∧𝐴[0] [𝑎/𝑏] ∧𝐴[0] [𝑏/𝑎];
6 else
7 P ← P ∪ {𝜙};
8 for 𝑛 ∈ [1, 𝑁 ) do
9 for𝜓 ∈ P do

10 if ¬(A[𝑛] =⇒ 𝜓 ) then
11 P ← P \ {𝜓 };
12 return P ;

𝑧 ≥ 2 ∧ 2 = 𝑦 =⇒ 𝑧 ≥ 𝑦 and 2 = 𝑦 =⇒ 1 ≤ 𝑦, but 2 = 𝑦 ≠⇒ 1 ≥ 𝑦, inferFromProjections
returns {𝑧 ≥ 𝑦, 1 ≤ 𝑦}.
The next iteration of the main algorithm is largely similar in its operations for the abduction

steps taken with the next bound 𝑓
def
= 𝜆𝑧 . 𝑧, which thus is omitted for brevity.

4.4 Support for Branching Control Flow
The algorithm offers sophisticated reasoning for cases of branching control flow, i.e., where the
symbolic constraints require disjunctions. In the previous subsection, where we only considered
cases with straightforward monolithic behaviors, we can use effective heuristics to generalize
preconditions from bounded abduction. However, they expect the abduction results to be disjunction-
free. If a loop has branching control flow (i.e., if-then-else statements) then the heuristics become
ineffective. In this section, we explain how Alg. 2 overcomes this obstacle and goes over a more
complicated process to synthesize a precondition for a given bound.

Recall that an abduction query is solved in line 5 of Alg. 2 on each of the unrollings, resulting in
a formula that captures various constraints possible for a set of loop transitions. This formula is in
general a disjunction where each disjunct describes a single branch taken in the loop. We assume
that each disjunct has no nested disjunct and thus is referred to as a projection.
Projections are necessary to capture branching control flow in a loop. With the results from

abduction collected, the algorithm moves to group the projections taken from each unrolling in
all possible combinations. Grouping the projections in this way allows us to analyze the behavior
of a particular symbolic execution of the loop. If instead we examined the full disjunction, the
result would be a precondition that implies all of the loop conditions described by the disjunction.
Instead we aim for a precondition that describes only particular sequences of the loop iterations
and applies to the bound we are solving for.

We target such a precondition by splitting the disjunction produced by our abduction query. In
this way our precondition is applicable to the bound that was found in Alg. 1. At the end of Alg. 2
we then perform a kind of weakening of the precondition through Alg. 4, and weaken further if
necessary in lines 14-16. This is explained in more detail below.
Alg. 2 makes a call to Alg. 3 that processes the list A containing logical formulas to produce a

set of weakened preconditions P . Alg. 3 operates in two parts: First, it processes A[0] by splitting
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each equality constraint 𝑎 = 𝑏 into two inequalities (𝑎 ≤ 𝑏 and 𝑎 ≥ 𝑏) while preserving all other
conjuncts. Second, it adds extra formulas to the consideration by exploiting equalities and making
various substitutions. Then, it iteratively refines this set by removing any inequality that is not
implied by subsequent elements A[1] through A[𝑁 − 1]. Upon termination, P contains the set of
weakened constraints that make up the precondition for 𝑓 (V ).

Example 4.8. Consider the program in Fig. 2 (c). Assume a bound 𝑓
def
= 𝑛 − x is an input to Alg. 2.

The abduction query for an unrolling of length one of the transition system is as follows:

𝜓1 (𝑥,𝑦,𝑚, 𝑛) =⇒ ∃𝑥 ′, 𝑦 ′,𝑚′, 𝑛′ . x = 0 ∧ y = 0 ∧ x < 𝑛 ∧𝑚 =𝑚′ ∧ 𝑛 = 𝑛′∧
y
′ = 𝑖𝑡𝑒 (y < 𝑚, y + 1, y) ∧ x ′ = 𝑖𝑡𝑒 (y < 𝑚, x, x + 1) ∧ x ′ ≥ 𝑛′ ∧ 𝑛′ − x ′ = 0

The abduction yields the following formula:

n > 0 ∧ x = 0 ∧ y = 0 ∧ n > x ∧ n − x = 1 ∧ y ≥ 𝑚
This result describes the case that when the loop can only perform one iteration, the branch

that increments y can never be reached, hence the part of the precondition y ≥ 𝑚. It also correctly
gives the initial values of variables x and y.

The unrolling of length two is processed similarly, with one more transition through the loop:

𝜓2 (𝑥,𝑦,𝑚, 𝑛) =⇒ ∃𝑥 ′, 𝑦 ′,𝑚′, 𝑛′, 𝑥 ′′, 𝑦 ′′,𝑚′′, 𝑛′′ . x = 0 ∧ y = 0 ∧ x < 𝑛∧
y
′ = 𝑖𝑡𝑒 (y < 𝑚, y + 1, y) ∧ x ′ = 𝑖𝑡𝑒 (y < 𝑚, x, x + 1)∧

𝑚 =𝑚′ ∧ 𝑛 = 𝑛′ ∧ 𝑛′ − x ′ = 0
y
′′ = 𝑖𝑡𝑒 (y′ < 𝑚′, y′ + 1, y′) ∧ x ′′ = 𝑖𝑡𝑒 (y′ < 𝑚′, x ′, x ′ + 1)∧

𝑚′ =𝑚′′ ∧ 𝑛′ = 𝑛′′ ∧ x ′′ ≥ 𝑛′′ ∧ 𝑛′′ − x ′′ = 0

Abduction produces a disjunction now:

𝜓2
def
= x = 0 ∧ y = 0 ∧ ((y ≥ 𝑚 ∧ n = 2) ∨ (𝑚 = 1 ∧ n = 1))

Here abduction has captured the two outcomes possible for an execution of the loop for two
iterations. Either y ≥ 𝑚 and the loop iterates twice with 𝑛 having a value of 2, or the loop iterates
once with y < 𝑚 and then once with n having the value 1. In the first case, x increments on each
iteration, and the loop terminates when x = 2. In the second case, x has a final value of 1.
The disjunctive nature of the result of the second abduction query prevents us from effectively

generalizing it with the result of the first abduction query. Our solution is to first: DNF-ize the
results of abduction, create a list of combinations, and apply algorithm inferFromProjections for
each (disjunction-free) combination. That is, first inferFromProjections gets

x = 0 ∧ y = 0 ∧ y ≥ 𝑚 ∧ 𝑛 = 1 and
x = 0 ∧ y = 0 ∧ y ≥ 𝑚 ∧ 𝑛 = 2

and it returns x = 0∧y = 0∧y ≥ 𝑚∧𝑛 > 0 which passes the safety check in Alg. 2 and furthermore
can be weakened to y ≥ 𝑚 ∧ 𝑛 > 0 because x = 0 ∧ y = 0 is part of the constraint describing the
initial states. Second, it gets

x = 0 ∧ y = 0 ∧ y ≥ 𝑚 ∧ 𝑛 = 1 and
x = 0 ∧ y = 0 ∧𝑚 = 1 ∧ n = 1

and it returns x = 0 ∧ y = 0 ∧ n = 1. However, this precondition is too restrictive, and the safety
check in Alg. 2 returns false. Thus, only the first generalized abduction result is used as the output
of getPre in Alg. 1.
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Algorithm 4: weakenAndCheck(𝑇, 𝜑,Θ)
Input: 𝑇 = ⟨V , init, tr⟩: program, 𝜑 : post-condition, P : a set of expressions forming a

precondition on 𝑇 .
Output: 𝛽 : a weakened precondition for the bound tc.

1 let G be P andW be ∅;
2 for 𝛾 ∈ G do
3 G ← G \ {𝛾};
4 if ¬isSafe(⟨V , init ∧ ∧

𝜌∈G
𝜌 ∧ ∧

𝜔 ∈W
𝜔, tr⟩, 𝜑) then W ← W ∪ {𝛾};

5 return
∧

𝜔 ∈W
𝜔 ;

4.5 Strategic Weakening While Maintaining Safety
Since 𝜑 is based on a finite unrolling, it can be the case it is too strong and it overlooks states that
are valid under the current bound 𝑓 (V ). Alg. 4 attempts to find a weaker precondition that is still
valid for 𝑓 (V ).

Theorem 4.9. Alg. 4 returns a (possibly weakened) precondition that maintains the safety of the

system 𝑇 .

Theorem 4.9 is proven by looking at two cases. The first is when no weakening is done. Alg. 4 is
only visited when the system is safe under the precondition

∧
𝛾 ∈P

𝛾 , and it is clear that the system

maintains safety if no changes to the precondition are made. In the next case, the algorithm only
drops an entry 𝛾 from P when the new precondition

∧
g∈G\{𝛾 }

g also passes a safety check. If, after

dropping 𝛾 the system becomes unsafe, 𝛾 is added back to the precondition for all subsequent
checks. Thus, in line 5, all expressions that led to non-safety when removed (namely those added to
set W ) from P are returned as the new precondition. In other words, Alg. 4 only drops expressions
from P when they do not affect the safety of the system under the bound 𝜑 .

In line 4, Alg. 4 makes a check for the safety of the augmented transition system 𝑇
𝑓

tc. It is at this
point that it is most obvious where our bound analysis via precondition synthesis is reduced to a
task of safety verification. In doing so we adopt the guarantees provided when a safe inductive
invariant is found. If this check returns safe then we know that the precondition and the bound are
correct. Since it is possible for more than one set of projections to produce a good precondition for
a bound, Alg.1 (lines 14-16) decides whether a newly found bound is weaker than one previously
found. Further, Alg. 1 runs until the conjunction of negated preconditions is no longer satisfiable.
When this occurs, it signals that the preconditions cover all possible executions of the program.

Theorem 4.10. When Alg. 1 terminates, it returns a solution to the ELBA problem.

We offer an informal proof of Thm. 4.10. For each precondition we find, and the bound associated
with it, Alg. 2 performs a safety check for the corresponding underapproximation in line 13. The
safety property ensures that after the loop tc must be exactly zero. When this check is passed,
it tells us that transition counter tc always evaluates to zero at the end of the loop under the
precondition 𝜓 , confirming thus that the bound is exact. Finally, the algorithm terminates only
when all the preconditions (and thus, underapproximations) have been exhaustively explored and
cover all possible initial states.
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4.6 Invariant Discovery
In this subsection, we elaborate on a subroutine of Alg. 2 to find safety invariants for each discovered
precondition. The inability to find them (usually, after a timeout) triggers the algorithm to withdraw
the precondition. In a nutshell, our invariant synthesizer is a guess-and-check loop that takes a set
of candidate interpretations for inv as input, then substitutes the conjunction of them for inv find
Def. 3.3, and removes the candidates that break the validity of at least one implication. We use a
staged approach for enumerating candidates.

Stage 1. We begin with checking candidate invariants created as a by-product of our data learning.
In Alg. 1, the method invFromData may generate equalities that do not involve tc. These equalities
are not used as part of the bounds, they are rather held over for use in this stage of invariant
synthesis.

Stage 2. We next check the candidates from literals of𝜓𝑖 and formulas forward-propagated from
𝜓𝑖 to the next step. Specifically, let 𝜓𝑖 =

∧
𝑖

𝑐𝑖 . Then, for each 𝑐𝑖 , we compute a predicate 𝑐 ′𝑖 using

quantifier elimination (QE), i.e.,

𝑐 ′𝑖 (V ′)
def
= QE(∃𝑉 . 𝑐𝑖 (V ) ∧𝜓𝑖 (V ) ∧ tr (V ,V ′))

A set of variables 𝑉 ⊆V ∪V ′ only excludes the primed variables occurring in 𝑐𝑖 .
Stage 3. We synthesize predicates that are implied by𝜓𝑖+1 by mutating (or merging) literals from

𝜓𝑖+1. In particular, assume two literals 𝑐𝑖 and 𝑐 𝑗 from 𝜓𝑖+1 have linear combinations ℓ𝑖 and ℓ𝑗 as
subterms, respectively. Then we introduce a fresh integer variable 𝑣 and replace ℓ𝑖 and ℓ𝑗 by ℓ𝑖 + 𝑣
and ℓ𝑗 + 𝑣 , respectively in 𝑐𝑖 and 𝑐 𝑗 . Eliminating 𝑣 from the conjunction of the resulting literals
yields a new invariant candidate. More formally,

𝑐𝑖 𝑗
def
= QE(∃𝑣 . 𝑐𝑖 [ℓ𝑖 + 𝑣/ℓ𝑖 ] ∧ 𝑐 𝑗 [ℓ𝑗 + 𝑣/ℓ𝑗 ]) .

The formula under QE is an overapproximation of the original formula 𝑐𝑖 ∧ 𝑐 𝑗 : indeed, if 𝑣 is
instantiated by zero, we get exactly 𝑐𝑖 ∧ 𝑐 𝑗 .

Stage 4. Lastly, we backward-propagate the whole𝜓𝑖+1 similarly to what we did in stage 2, but
using abduction:

𝑐 ′𝑖 (V )
def
= QE(∀𝑉 .𝜓𝑖 (V ) ∧ tr (V ,V ′) =⇒ 𝑐𝑖 (V ′)) .

The main intention is to first try candidates that are easier to discover, so if there exists an
invariant that only needs ingredients from step 1, then the process converges faster. However,
sometimes they might require helper lemmas that should be discovered during another stage. So in
principle, given enough power resources, all the stages can be combined and executed at once.

Lastly, we need to mention that this staged invariant synthesis process is by no means complete.
We only allow a finite (and relatively small) number of candidates, which in principle can be
extended by guessing from grammars, interpolation, or data analysis. Our intention to keep it
short is motivated by the fact that the main algorithm invokes the invariant synthesizer many
times, and we often prefer to terminate it with the unknown result and continue with another can-
didate, rather than to wait until it finds an invariant that appears to be useless for our bound analysis.

In this section, we have outlined several techniques, some of which rely on the synthesis
of expressions to identify preconditions or inductive invariants. It is worth noting that the syn-
thesis process involved in these techniques presents a computationally intensive challenge, often
characterized by exponential complexity. As a result, there may be scenarios where ELBA is unable
to compute a solution within practical time limits, even though a solution could exist.
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Table 1. Exact bound results: ELBA outperforms

Loopus by over 2X in finding exact bounds. Loo-

pus and KoAT analyze quickly, often under 1s.

Tool Exact bound

ELBA 62
Loopus 28
KoAT 0
FreqTerm 10

Table 2. Total successful analyses: ELBA found exact

bounds for 62 benchmarks, Loopus 59 upper bounds,

KoAT 64 upper bounds, FreqTerm 60 ranking functions.

Tool Total Successes Avg time (s)

ELBA 62 16.8
Loopus 59 𝜖

KoAT 64 𝜖

FreqTerm 60 41.0

5 Implementation and Evaluation
We have implemented our approach in a tool called ELBA4. It has been developed within the
FreqHorn [16] framework, and we make use of several features for managing the instrumentation
of a program for our bound analysis. For our SMT queries ELBA uses the Z3 solver [13]. We have
implemented our own data analysis to infer relationships between program variables, and we reuse
the functionality of FreqHorn to create unrollings and discover invariants incrementally. The
data learner keeps unrollings small in the interest of compute time. Larger unrollings could be
generated in principle, but there is no benefit to the results since we are inferring relationships in
targeted places in the loop. To verify our synthesized invariants, we use the Houdini method [19],
which aggressively prunes expressions that do not pass initiation (1) and are not inductive (2).

Benchmarks. Our benchmark set is taken from the Termination Problem Data Base
5, and includes a

subset of the benchmarks from Loopus, FreqTerm, and FreqHorn. Several multi-phase benchmarks
come from the ImplCheck repository [40]. The benchmarks are in linear integer arithmetic and
have a loop with deterministic guards. We have also excluded non-determinism within the loop,
such as non-deterministic if-statements (because in these cases, exact bounds rarely exist).

We have examined ELBA on 75 benchmarks that cover many different types of loops. 49 bench-
marks are single-phase loops, with the remaining 26 being multi-phase loops. This is a useful
separation to observe since multi-phase loops usually require more analysis to capture all of the
branches in which the loop can execute. It is this distinction that separates our algorithm from
others since other approaches cannot find bounds for individual phases or “configurations” of
input variable values. Further, other tools completely fail on many of the multi-phase benchmarks,
with Loopus able to solve 16 of the 26 multi-phase benchmarks. KoAT solves 18 out of 26, and
FreqTerm solves 19 of 26. Another characteristic in the benchmark set is programs that have
an initial assignment to their variables and those that do not. When a program has a concrete
assignment to some or all of its variables it is likely that the bound can boil down to a concrete value.
35 benchmarks have such a concrete assignment, with the remaining 40 having a non-deterministic
initial assignment to its input variables. We handle them with our preprocessor that soundly avoids
creating and solving long unrollings due to large constants (recall the footnote in Sect. 4.2).

Loopus and KoAT strive to find a loop upper bound. Loopus uses abstract interpretation for its
analysis, and KoAT uses a runtime analysis to estimate bounds. For Loopus occasionally the upper
bound it finds is in fact the exact bound (though it never checks for exactness), however this is only
the case in simple examples. KoAT reports its results as loose upper bounds. FreqTerm performs
termination analysis by iteratively guessing and checking candidates for a ranking function that
can capture an exact bound in some cases, but again only on simple ones.

4The source code is available at https://github.com/freqhorn/elba.
5https://github.com/TermCOMP/TPDB/tree/master/C_Integer.
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Experiments. ELBA computed exact bounds for 62 of the 75 single-loop benchmarks. There are
38 examples where only ELBA, out of the four tools in the comparison, finds an exact bound. These
are the cases where another tool fails to find an upper bound. When ELBA could not find an exact
bound, it likely fails to synthesize a precondition in the abduction step and/or fails to synthesize a
relationship between the instrumented counter and the program’s variables by the data learner.
ELBA finds bounds for 3 benchmarks that the three tools in comparison do not succeed.

Loopus found approximate bounds for 59 benchmarks. KoAT found approximate bounds for 64
benchmarks, and FreqTerm found a ranking function for 60 benchmarks. Out of the comparison
tools Loopus finds the most exact bounds, 28. FreqTerm’s ranking functions represent exact
bounds in 8 benchmarks. KoAT does not find an exact bound for any of the benchmarks. Table 1
summarizes the number of exact bounds found by each tool, while Table 2 summarizes the total
number of benchmarks for which each tool came to a successful result.

Our practical contribution is a fast tool that leverages state-of-the-art symbolic reasoning tech-
niques. We have implemented several new techniques to solve a first-of-its-kind exact bound
problem. These new algorithms show an ability to find exact bounds for many types of loops, even
finding an exact bound for programs that other bound analysis tools fail. This novel approach
shows promise in its use for applications that require a more precise bounds analysis.

6 Related Work
Resource Analysis. There are many techniques for analyzing loop bounds [6, 7, 18, 20, 33, 36, 49]

that mainly use abstraction and/or invariants to characterize the behavior of a program. If a loop
has multiple phases, it can be difficult to synthesize invariants that describe those phases and
the termination conditions associated with them. Specifically, [36] discovers a large nonlinear
numerical invariant and extracts particular cases from it. The approaches of [33, 47] use static
analysis and abstract interpretation to gather information about costs at various points in a program.
Cost analysis is also done by quantitative abstract execution [3] which focuses attention on the
loop’s counter and abstracts the parts of a loop’s body to perform its analysis. Loopus [47] exploits
the difference constraint abstraction, relational inequalities that describe some upper bound on a
next state variable, and oscillates between variable bound analysis (an upper bound on the values a
variable can take) and transition bound analysis (an upper bound on the program transitions).

Lower bound analysis [2] on the worst case cost attempts to find a tight upper bound on a
terminating loop. With the use of quasi invariants (inductive invariants that don’t hold in the initial
states) and narrowing guards this approach specializes a loop such that the analysis works through
executions that are considered worst case executions. A tight upper bound, or in the case of [2],
a lower bound on a worst-case execution, are not exact. If a lower bound and an upper bound
are found to be the same, many claim this is exact, however we note that this is only the case for
specific conditions on an execution of the program. An exact bound must consider all possible
executions of the program. Our contribution makes an advancement in the bound analysis realm
by reporting the exact number of iterations a loop may perform based on the program input.
For equivalence checking, a technique for exact bound analysis could be useful to construct

the alignment of unbalanced loops. The work from Alien [24] attempts to find an exact number
of iterations that a source and target loops will perform. If exact bounds can be found, then the
technique attempts to align the loops. To perform alignment, the loops are reorganized by moving
certain iterations to either before or after the loop. Their technique for finding exact bounds can
find them for only range-based loops with a counter, and we believe ELBA could improve their
approach by supporting more complicated loops.
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Termination Analysis. Synthesizing an upper bound for a loop counter can be done with some
good guesses about the behavior of the loop [10, 18]. These techniques aim to synthesize a sufficient
upper bound on the loop by using abstraction or Syntax Guided Synthesis (SyGuS) techniques to
prove that a loop will eventually terminate. However, these techniques do not capture an exact
bound on the loop. Another technique is to analyze the greatest lower bound and the least upper
bound of a loop [31]. The produced result assigns a value to the counter variable, and captures
only the information about a specific configuration rather than a generalized figure on the input
variables. Our method aims to synthesize a specification for an unknown precondition on a counter,
and we expect that specification to capture the exact number of iterations a loop will perform.

Data Driven Learning. Data is being increasingly exploited in various automated reasoning
approaches [17, 21, 34, 36–38, 45, 49]. Usually this data is derived from a simple unrolling to gather
information about the early few iterations of a loop, and is used to learn simple facts about the
program. The use of data to drive invariant synthesis has been studied as a way to analyze program
behavior for clues as to the shape of invariants [16, 29, 34, 39, 45, 48]. Data-driven techniques
often start by analyzing the feasible paths through a program, producing an unrolling up to some
bound [16, 45], or by analyzing counterexamples to guide the invariant inference [21, 36]. In [37],
data is gathered from program executions and linear regression is performed to guess an upper
bound. Their algorithm attempts to prove that the upper bound is valid by performing linear
regression on a modified set of data to obtain an inductive invariant. Limitations of this approach
are in its ability to handle partitioning of program inputs, and of loops with multiple phases. Recent
data-driven invariant discovery work extends the unrolling idea to fast-forward an unrolling to a
particular point in a loop’s execution [40].

Specification/Invariant Synthesis. Techniques to discover a specification and invariants share a
close relationship [14, 42]. Synthesis of preconditions [12, 39, 43] (and ours) is a natural subproblem
of specification synthesis that focuses on the initial stage of a program. More generally, this analysis
can be done for arbitrary points of a program [1, 42]. Invariant synthesis is a widely studied
problem [4, 5, 9, 14, 25, 27, 28, 30, 35], which is ultimately undecidable, but research on subsets of
the problem have made significant progress, specifically using SMT techniques. However, there
still remain large gaps in these subsets, requiring more work to be done on the subject. One such
example is loops with multiple phases. These cases are particularly challenging since they often
require disjunctive invariants [40, 44]. In the future, these techniques can strengthen our ELBA
solver by making its strategic weakening more effective.

7 Conclusion
We have described a first-of-its-kind technique to compute exact bounds for a loop as a function
over the input variables, i.e., before the loop begins. Our approach automatically discovers such a
function by taking into account all possible executions of the program. For each class of executions
that shares the same bound, our approach synthesizes a precondition using a novel abduction-based
technique. The synthesized bounds are correct by construction, thanks to the discovery of safe
inductive invariants that is performed on demand. The implementation in a tool called ELBA has
been shown to outperform state-of-the-art bound analysis tools. Our future work will explore how
our techniques can be adapted to discover under-approximations of (mainly nondeterministic)
programs with exact bounds when no exact bound exists for the whole program.

Artifact Available. A virtual machine is available to reproduce the reported results [41].
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